WO2006081405A2 - Physical layer repeater configuration for increasing mino performance - Google Patents

Physical layer repeater configuration for increasing mino performance Download PDF

Info

Publication number
WO2006081405A2
WO2006081405A2 PCT/US2006/002900 US2006002900W WO2006081405A2 WO 2006081405 A2 WO2006081405 A2 WO 2006081405A2 US 2006002900 W US2006002900 W US 2006002900W WO 2006081405 A2 WO2006081405 A2 WO 2006081405A2
Authority
WO
WIPO (PCT)
Prior art keywords
repeater
wireless
tdd
frequency
wireless repeater
Prior art date
Application number
PCT/US2006/002900
Other languages
French (fr)
Other versions
WO2006081405A3 (en
Inventor
James A. Proctor, Jr.
Kenneth M. Gainey
James C. Otto
Original Assignee
Widefi, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Widefi, Inc. filed Critical Widefi, Inc.
Publication of WO2006081405A2 publication Critical patent/WO2006081405A2/en
Publication of WO2006081405A3 publication Critical patent/WO2006081405A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/20Repeater circuits; Relay circuits
    • H04L25/24Relay circuits using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation

Definitions

  • WLANs wireless local area networks
  • 802.11 as set forth in the 802.11 wireless standards
  • Wi-MAX Wi-MAX
  • Bluetooth The standard wireless protocol with the most commercial success to date is the 802.1 Ig protocol.
  • TDD time division duplexing
  • the random packet nature of the WLAN protocols provides no defined receive and transmit periods.
  • the packets from each wireless network node are spontaneously generated and transmitted and are not temporally predictable.
  • a protocol referred to as a collision avoidance and random back-off protocol is used to avoid two units transmitting their packets at the same time.
  • this is referred to as the distributed coordination function (DCF).
  • DCF distributed coordination function
  • WLAN repeaters have unique constraints due to the above spontaneous transmission capabilities and therefore require a unique solution. Another unique requirement is that, since these repeaters use the same frequency for receive and transmit, some form of isolation must exist between the receiver and transmitter of each repeater. While existing CDMA systems employ directional antennas and physical separation of the receive and transmit antennas to achieve this isolation, such techniques are not practical for WLAN repeaters in many operating environments such as in the home where lengthy cabling is not desirable or may be too costly.
  • the present invention provides a wireless network with at least one Multiple Input Multiple Output (MMO) wireless network station and two or more physical layer repeaters each for receiving wireless signal to or from the at least one MIMO wireless network station and each for re-transmitting the wireless signal while continuing to receive the wireless signal.
  • MMO Multiple Input Multiple Output
  • At least one MIMO wireless network station and the two or more physical layer repeaters may operate according to a protocol, such as the proposed 802.1 In protocol.
  • Each repeater can receive and transmit a wireless signal from or to the at least one MEVIO wireless network station on a first frequency and synchronously re-transmitting the wireless signal while continuing to receive the wireless signal on a second frequency.
  • the repeaters may be time division duplexed (TDD), or, alternatively, may be frequency division duplexed (FDD), and can be configured to transmit or receive the wireless signals to or from the MIMO wireless network station and re-transmitting the wireless signals in a synchronized manner when operating in a translating mode.
  • the at least one MDVIO wireless network station comprises a frequency translating MEVIO wireless network station. It will be appreciated that in accordance with 802.1 In proposed standards, in a MEVIO environment, an access point configured as a MIMO wireless network station has two or possibly more antenna for transmitting a signal in a diversity like configuration and the
  • the present invention provides a time division duplex (TDD) wireless repeater configuration including a first TDD wireless repeater capable of recognizing that it is operating in a Multiple Input Multiple Output (MIMO) wireless network, and a second TDD wireless repeater spatially separated from the first TDD wireless repeater by a predetermined distance or may be in the same package and may not be physically seperate.
  • TDD time division duplex
  • the first TDD wireless repeater is capable of identifying a presence of the second TDD wireless repeater, entering into a mode with the second TDD wireless repeater to receive wireless transmissions in a synchronous manner with the second TDD wireless repeater on a same first frequency, and of retransmitting the wireless transmissions in a manner that is synchronous with the second TDD wireless repeater on a same second frequency, hi an alternative embodiment, two or more repeaters may be physically integrated into the same package simplifying synchronization control.
  • the physical layer repeaters can be coupled using telephone wiring or household wiring is described in greater detail in the applications noted below, hi still another alternative embodiment, the physical layer repeaters can repeat in a non-frequency translating mode where receive and transmit isolation becomes the key issue. Accordingly, physical separation of the client side and AP side antennae must be achieved using a variety of methods such as using household wiring, again, as discussed in the applications noted below.
  • the first TDD wireless repeater may be a master repeater, and the second TDD wireless repeater a slave repeater.
  • the master repeater which may be a repeater that is first to be activated, or a repeater having the strongest signal power with respect to a MMO base station, is for re-transmitting the wireless transmissions independently of the slave repeater, and the slave repeater is for retransmitting the wireless transmissions only after re-transmission of the wireless transmissions by the master repeater.
  • the master repeater is for communicating a master/slave protocol to the slave repeater that activates the slave repeater in a slave mode.
  • the slave repeater is for re-transmitting the wireless transmissions during periods of MIMO operation as designated by MIMO device generated messages
  • the master repeater is for re-transmitting the wireless transmissions during both MEVIO and non-MIMO periods of operation.
  • the slave repeater may include an oscillation detection circuit for identifying when a frequency translation direction is erroneously chosen by the master repeater and for terminating re-transmission of the wireless transmissions.
  • the first TDD wireless repeater and the second TDD wireless repeater may also be a first TDD frequency translating wireless repeater and a second TDD frequency translating wireless repeater.
  • a time division duplex (TDD) wireless repeater configuration includes a first TDD wireless repeater capable of detecting transmissions from Multiple Input Multiple Output (MIMO) enabled devices in a wireless network, and a second TDD wireless repeater also capable of detecting the transmissions from the MEVIO enabled devices.
  • the first TDD wireless repeater and the second TDD wireless repeater begin to re-transmit in a synchronous mode with one
  • FIG. 1 is a block diagram of a wireless network including a frequency translating physical layer repeater configuration according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic block diagram of a frequency translating physical layer repeater such as those shown in FIG. 1 ;
  • FIG. 3 is a schematic block diagram of the digital sequencer in FIG. 2;
  • FIG. 4 is a flow diagram illustrating the functions performed by the digital logic shown in FIG. 3 in determining whether a received signal is present on Fl or F2 when repeaters are designed to operate in a physical layer mode of operation during MIMO operation;
  • FIG. 5 is a diagram illustrating sequential packet transmission in the network in FIG. 1;
  • FIG. 6 is a flow diagram illustrating how a master repeater such as that shown in FIG. 1 and operating in MIMO mode determines the direction in which to repeat a MIMO signal based on the transmission, or lack of transmission, of RTS and CTS signals.
  • FIG. 7 is a flow diagram illustrating the protocol based synch mode of operation at a slave repeater when a transmit direction is determined based on the contents of MIMO packets encapsulated in payload data packets transmitted from a
  • FIG. 1 illustrates a multi-input, multi-output (MMO) protocol-based network (network) 100, such as is described in IEEE 802.11 draft proposals from TGnSync and WWise consortiums that enables consistent independent signal paths to be generated even in environments, such as home environments, in which multi-path transmission capability and spatial diversity are typically limited.
  • MMO multi-input, multi-output
  • MIMO transceivers 102, 104 may be any type of wireless communications devices including client devices, MEVIO-enabled access points, or any other type of known network node capable of operating in MIMO mode and of transmitting and/or receiving data in a wireless environment based on a wireless protocol such as 802.1 Ib, 802.1 Ig, or 802.1 In (proposed), in the network 100.
  • the network stations 102, 104 are capable of communicating with one another over distances outside of normal coverage ranges through wireless physical layer repeaters (repeaters) 106, 108.
  • the repeaters 106, 108 which may be either TDD or FDD type frequency translating repeaters, are capable of reacting to the particular protocol implemented in the network 100 in which they operate. In other words, the repeaters 106, 108 are capable of addressing the backwards compatibility issue that will exist in the network, as the network must be capable of enabling both current generation and legacy network stations to communicate regardless of the respective operating protocols of the devices. [0022]
  • the repeaters 106, 108 react based on one of two fundamental modes of synchronous operation.
  • a first exemplary mode of operation is a physical layer mode of operation in which the repeaters 106, 108 operate in a master/slave relationship during MIMO signal transmission irrespective of the underlying message protocol.
  • a second mode of operation is a protocol based mode of operation in which the repeaters 106, 108 may or may not operate in a master/slave relationship and are triggered into MIMO operation based on an underlying protocol detected during MIMO transmissions to/from network stations that are communicating in the network 100.
  • a repeater is dedicated as a master repeater based on, for example, it being the first repeater to be activated, or it being the repeater having the strongest signal power with respect to a MIMO base station (not shown), with all other repeaters automatically being designated as slave repeaters.
  • the repeater operating as the slave repeater preferably includes an oscillation detection circuit for identifying when a frequency translation direction is erroneously chosen by the master repeater and for terminating re-transmission of the wireless transmissions.
  • an oscillation detection circuit for identifying when a frequency translation direction is erroneously chosen by the master repeater and for terminating re-transmission of the wireless transmissions.
  • FIG. 2 is an exemplary system diagram 200 showing the components of the wireless repeaters 106, 108 when the repeaters 106, 108 are designed to operate in the above-mentioned physical layer mode of operation.
  • Key features of the wireless repeaters 106, 108 are the ability receive a signal and translate the frequency of the received signal from a first bi-directional frequency (Fl) to a second bi-directional frequency (F2), or vice versa, with very little distortion of the signal. This is made possible by fast signal detection and delay of the received signal long enough to determine proper control actions.
  • the antenna 300 shown in FIG. 2 transforms received radio waves to a voltage signal and feeds the voltage signal to an isolator 305.
  • the isolator 305 may not be included depending upon the type of antenna configuration utilized. Two such antenna configurations will be described below.
  • the isolator 305 allows a signal to pass from the antenna 300 to a Low Noise Amplifier (LNA) 310 and from a power amplifier 325 to the antenna 300, but blocks or isolates the LNA 310 from the power amplifier 325.
  • LNA Low Noise Amplifier
  • Other embodiments of the isolator 305 could include, but are not limited to, circulators, directional couplers, splitters, and switches.
  • a signal received and transformed by the antenna 300 that passes through the isolator 305 is fed to the LNA 310, which amplifies the signal and sets the noise level at that point.
  • a signal amplified by the LNA 310 is fed to an RF splitter 315, which performs an RF power splitting, or coupling, function on the signal to split the signal into two different paths.
  • the splitter 315 could also be a directional coupler or any device that can separate one signal into two signals.
  • the antenna 300, the LNA 310 and the RF splitter 315 are the primary components forming a receiver. Further, one skilled in the art will readily recognize that the antenna 300, the power amplifier 325, the amplifier 330, the filter 335, the switch 345 and the mixer 350 are the primary components forming a transmitter.
  • Mixers 320, 321 are frequency conversion devices that mix signals passed from the splitter 315 with signals output from the local oscillators 340, 341 at respective frequencies designated as LOl, LO2 to produce intermediate frequency (IF) or typically lower frequency signals.
  • the local oscillators 340, 341 are tuned to the different frequencies LOl, LO2 such that two different signals at two different frequencies fed from the splitter 315 can be converted to a common IF frequency.
  • the splitters 323, 324 which operate the same as the splitter 315 described above, separate the IF signals output from the respective mixers 320, 321 into two different paths. One path from each of the splitters 323, 324 goes to filters 360, 361, respectively, while the other path from each of the splitters 323, 324 goes to filters 365, 366, respectively.
  • the filters 360, 361 which are preferably band pass filters with delays, remove all outputs from the mixing operation except the desired frequency components.
  • the filters 360, 361 have a sufficient time delay such that the detection and control unit 362 can detect which of the two RF frequencies is present and perform control functions described below prior to the signals being available at the output of the filters 360, 361, as detectors 370, 371 are in parallel with the delay filters 360, 361.
  • Methods of delaying electrical signals are well known to those of ordinary skill in the art, and include but are not limited to Surface Acoustic Wave (SAW) devices and the like. However, if it is acceptable to truncate a portion of the first part of the RF signal, then the filters 360, 361 would not need specified delays.
  • SAW Surface Acoustic Wave
  • the mixers 320, 321, the splitters 323, 324 and the filters 360, 361 are the primary components forming a frequency converter.
  • the filters 365, 366 in the detection and control unit 362 also perform the same type of band pass filtering as the filters 360, 361.
  • the main difference is that the filters 365, 366 are preferably fast filters without specified long time delays. Additionally, the filters 365, 366 preferably do not require the same level of filtering performance as the filters 360, 361, although one skilled in the art would recognize that varying filter performance within the confines of performing the filtering objective is a design choice.
  • filters or devices other than band pass filters might be used to perform the above discussed band pass functions.
  • Power detectors 370, 371 are simple power detection devices that detect if a signal is present on either of the respective frequencies Fl, F2 and provide a proportional voltage output if the signal is present.
  • Many types of analog detectors that perform this function may be used.
  • detectors could include, but are not limited to, diode detectors. Such diode detection could be performed at RF, IF or base band. Detectors providing higher performance than simple power detectors may be used as well. These detectors may be implemented as matched filtering at RF or IF using SAW devices, and matched filtering or correlation at base band after analog to digital conversion.
  • the power detectors 370, 371 are utilized to determine the presence of a wireless transmission on one of the two IF channels by comparing signals on the two IF channels with a threshold. Such a threshold could be predetermined or calculated based on monitoring the channels over time to establish a noise floor.
  • the power detectors 370, 371 may be used to determine start and stop times of a detected transmission.
  • the proportional voltage output by one of the power detectors 370, 371 in response to signal detection will be used by the digital sequencer 385 to detect whether a received signal is on Fl or F2 and to control the retransmission of the signal as is described below.
  • the power detection can be placed earlier or later in the signal processing path, as it is possible to detect signals so that the retransmission process may be switched on or off.
  • techniques for determining or limiting transmission time can be employed, including but not limited to placing a time limit on retransmission using a timer.
  • the filters 375, 376 are low pass filters and preferably have narrower bandwidths than the filters 365, 366.
  • the filters 375, 376 are required to remove the high frequency components that remain after signal detection in the power detectors 370, 371 and to provide an increase in signal to noise ratio by providing processing gain by reducing the detection signal bandwidth.
  • the signals output from low pass filters 375, 376 are input to the digital sequencer 385, which is configured to detect the presence of the received signal on either Fl or F2 based on appropriate control functions discussed below.
  • the digital sequencer has the ability to transmit and receive (TX / RX), as it includes a modem that is capable of monitoring MTMO-based protocol messaging between nodes in the network 100.
  • the digital sequencer 385 is capable of communicating with other like repeaters through an 802.11, or similar, protocol.
  • Feedback to a user can be controlled by the digital sequencer 385 via an indicator 390 which could be, but is not limited to, a series of light emitting diodes.
  • Feedback to the user could be an indication that the wireless repeaters 106, 108 is in an acceptable location such that either or both frequencies Fl, F2 from the wireless access point 100 and the network station 105 can be detected, or that power is supplied to the wireless repeaters 106, 108.
  • the digital sequencer 385 controls switches 345, 355.
  • the switch 355 is switched to allow the detected signal, either on Fl or F2, which is at an IF frequency, to be routed to the input of a frequency converter 350, which is another frequency translation device similar to the mixers 320, 321.
  • the digital sequencer 385 will set the switch 345 to allow a signal from the appropriate one of the local oscillators 340, 341 to be routed to the mixer 350 so that the IF frequency at the input to the frequency converter 350 is translated to the proper frequency at the output thereof.
  • the frequency offset or frequency offset estimate value is often available as a standard output of a typical MODEM or MODEM section of a wireless receiver such as a MODEM 363.
  • the MODEM 363 is configured to be selectively coupled to one of the intermediate frequency signal lines, such as the output of mixers 320 and 321.
  • the MODEM 363 is also coupled on the output side to control switch 355.
  • the frequency offset output of the MODEM 363 can be coupled to the detection and control unit 362 and in particular is coupled to the digital sequencer 385.
  • a frequency offset When a frequency offset is determined, it can be used to correct or synchronize the receiving repeater to the transmitting repeater so that the end-to-end frequency error is reduced, minimzed, or otherwise eliminated.
  • Various approaches can be used such as open loop control or closed loop control using the frequency offset value or estimate.
  • a loop filter can further be included to minimize noise values in the error estimate and/or the error estimate can be integrated over a time interval to remove at least transient noise, as is well understood in the art.
  • the corresponding one of local oscillator 340 and 341 corresponding to the detected frequency and to the transmitter section can be adjusted using control lines as shown, for example, in FIG. 2.
  • the local oscillator can be a tunable frequency synthesizer, a voltage controller oscillator (VCO), or some other type of local reference.
  • VCO voltage controller oscillator
  • a filter 335 is required to remove the undesirable term.
  • the undesirable term would be LO2+IF or 2.602GHZ.
  • the filter 335 performs the required filtering operations. The same is true if F2 was detected. A sum and difference product will occur, and the filter 335 must filter out the undesirable component.
  • the translated and filtered version of the received signal is applied to the amplifier 330, which is preferably a variable gain amplifier.
  • the amplifier 330 applies a variable amount of gain under control of the digital sequencer 385 to make sure that the signal being feed to the amplifier 325 is in the target transmit power range.
  • the amplifier 325 is preferably the final power amplification stage for the transmit signal.
  • the isolator 305 feeds its output to the isolator 305, which then sends the signal to the antenna 300.
  • the signal is then converted back to an electromagnetic field or radio wave by the antenna 300 in a manner well known to those of ordinary skill in the art.
  • This radio wave is a frequency translated and power amplified version of what was received by the antenna 300.
  • the point at which the input signal is down converted from RF to a digital signal may be altered such that more or fewer functions are performed in the RF domain or the digital domain.
  • multiple devices such as the network stations 102, 104 may be utilized in the present invention.
  • the repeaters 106, 108 will detect and retransmit signals from any of these devices.
  • the network stations 102, 104 communicate with each other within the protocol of a system (such as 802.1 In) that provides that the desired recipient of the retransmitted signal is identified.
  • the repeaters 106, 108 may serve many network stations.
  • the digital sequencer 385 is shown in more detail in FIG. 3. It will be appreciated that inputs 400, 410 are preferably coupled with the outputs of filter 375 and the filter 376 shown in FIG. 2. Thus, inputs 400, 410 are preferably coupled to threshold comparators 401, 411, respectively.
  • the reference threshold of comparators 401, 411 is preferably set by digital to analog converters (DAC) 404, 414 which may be internal to the digital sequencer 385 or may be provided externally, and may further be simple pulse width modulators or pulse density modulators.
  • the DACs 404, 414 are preferably controlled by a processor 406 and are preferably programmed based upon factors such as, for example, a probability of detection and a probability of false detection as derived by various algorithms known to those of ordinary skill in the art.
  • Detection algorithms may be based on a statistical analysis of samples of a received signal at ADCs 402, 412 and can include level crossing rates, average multipliers, and the like.
  • a SAW tooth control algorithm may be used to observe the "qualified" false detection rate, for example, on the comparators 401, 411.
  • the SAW tooth control algorithm works by determining when a false detection has occurred and further qualifying the false detection using known parameters of the relevant packet protocol, such as packet duration. If a threshold is crossed for only short periods of time, shorter than the packet duration, a false detection is most probable. It should be noted that valid ranges for packet durations are defined in accordance with protocol standards and specifications, such as 802.11. If a detection interval is too short, the detection cannot be associated with a valid 802.11 packet. If a detection interval is too long, the detection also cannot be associated with a valid 802.11 packet.
  • the detection threshold is set too low, interference may be present, the repeater could be oscillating, or the like.
  • a SAW tooth control algorithm adds an increment to the threshold for the comparator every time a false detection occurs, then subtracts a small amount from the threshold every time there is no detection. It will be appreciated that the relative increments and decrements of the detection threshold level will determine the false alarm rate, and the time constant of the resulting control loop. While SAW tooth control schemes have been effectively used in reverse link "outer loop power control" in, for example, IS-95 CDMA base stations, the application of a SAW tooth control loop to detection in accordance with various exemplary embodiments, provides advantages not previously appreciated.
  • the output signal 415 from comparator 411 is input to digital logic 416, which produces and outputs a logic 0 when a signal is present on F2.
  • digital logic 416 When a signal is present on Fl, the output signal 405 from the comparator 401 is input to the digital logic 416, which in turn produces and outputs a logic 1 or high level.
  • FIG. 4 is a flow diagram illustrating the functions performed by the digital logic 416 in determining whether a received signal is present on Fl or F2 when repeaters are designed to operate in the above-discussed physical layer mode of operation during MEVIO operation.
  • the repeaters 106, 108 when operating in the physical layer synch mode do not listen to the protocol message transmitted by the network stations 102, 104. Rather, the repeaters 106, 108 operate in a master/slave mode in which the master is capable of always functioning in both a normal WLAN and a MIMO repeating mode, and in which the slave repeater must detect signals being received and repeated by the master before being triggered to operate.
  • the network station 102 will be referred to as the transmitting network station 102
  • the network station 104 will be referred to as the receiving network station 104
  • the repeater 106 will be referred to when applicable as the master repeater 106
  • the repeater 108 will be referred to as the slave repeater 108.
  • the slave repeater 108 is in an idle mode during which its transmit function is off.
  • the slave repeater 108 determines, by receiving messages from the master repeater 106, whether the master repeater 106 has received an incoming MIMO signal. If the master repeater 106 has received an incoming MIMO signal, the slave repeater 108, through messaging received from the master repeater 108 via the modem in the digital sequencer 385, determines that the signal is transmitted by the transmitting network station 102 on Fl, and therefore must be transmitted by both the master repeater 106 and the slave repeater 108 on F2. At 506 and 508, the slave repeater 108 waits until both MIMO signals have been respectively transmitted and received on F2 and Fl.
  • the slave repeater 108 begins to transmit on F2 and to simultaneously receive on Fl in a manner that is synchronous with the master repeater 106, and continues to do so until at 512 it no longer detects the presence of a received signal on Fl.
  • the MMO signal If at 504 it is determined that the MMO signal is transmitted by the transmitting network station 102 on F2, the MMO signal therefore must be transmitted by both the master repeater 106 and the slave repeater 108 on F2.
  • the slave repeater 108 waits with the above associated delay until both MMO signals have been respectively transmitted and received on Fl and F2. Once the presence of transmitted and received MMO signals is detected on both Fl and F2, at 510 the slave repeater 108 begins to transmit on F2 and to receive on Fl, and continues until at 512 it no longer detects the presence of a received signal on Fl .
  • repeaters 106, 108 are capable of operating in MIMO mode to determine the transmit/receive frequencies and the direction in which a MIMO signal is to be transmitted irrespective of the underlying system protocol.
  • the protocol based mode of MIMO operation will now be discussed with respect to the repeaters 106, 1OS.
  • the protocol based mode of MIMO operation is based upon the triggering of MIMO operating modes at the master and slave repeaters 106, 108 by network station MIMO transmissions, enable the master and slave repeaters 106, 108 to determine on which frequency the MIMO signals are being transmitted.
  • three methods of determining the repeater transmit direction hereinafter referred to as Request To Send / Clear To Send (RTS/CTS), Clear to Send To SeIf(CTS To Self), and encapsulated MIMO packet protocol related methods, will also be discussed.
  • FIG. 5 illustrates the packet transmission sequence of the transmitting network station 102, the receiving network station 104 and the master and slave repeaters 106, 108 as shown in FIG. 1 prior to and during repeater MEMO operation.
  • the transmitting network station 102 transmits an RTS packet that includes data as to the duration of the MIMO packet to be subsequently sent.
  • the master repeater 106 receives and transmits this RTS packet from the transmitting network station 102 to the receiving network station 104 in a normal WLAN, or non frequency translating, mode.
  • the receiving network station 104 then transmits a CTS packet that includes data as to the duration that the receiving network station 104 will wait for the MIMO packet to be transmitted from the transmitting network station 102.
  • the master repeater 106 receives and transmits this CTS packet from the receiving network station 104 to the transmitting network station 102 in a normal WLAN 5 or non-frequency translating, mode.
  • the transmitting network station 102 receives the CTS packet, at 602, the transmitting network station then transmits the MIMO packet having a time duration (T), as defined either in the MIMO RTS packet and/or the MIMO CTS packet, to the receiving network station.
  • T time duration
  • both the master and slave repeaters 106, 108 are triggered and begin to operate in MIMO mode to transmit on F2 MEVIO packets received on Fl, or vice versa, depending upon the transmission direction, which is determined as follows.
  • FIG. 6 is a flow diagram illustrating how the master repeater 106 operating in MIMO mode determines the direction in which to repeat a MEVIO signal based on the transmission, or lack of transmission, of RTS and CTS signals.
  • the master repeater 106 is in idle mode with its transmit function off.
  • it detects whether it has received a CTS packet including MEVIO duration information transmitted from either the transmitting network station 102 or the receiving network station 104 on Fl. If the master repeater 106 detects receipt of the CTS packet, then at 706 the master repeater 106 determines if it had previously received an RTS packet transmitted from the transmitting network station 102 on F2.
  • the master repeater 106 determines that the message indicates that the network 100 is operating in the RTS/CTS Mode in which the client transmitting device 106 transmits the RTS packet, and in which the client receiving device transmits the CTS packet, prior to the client transmitting device 102 transmitting a MIMO signal.
  • Both the master and slave repeaters 106, 108 transmit in a synchronous manner on Fl and receive on F2 as indicated at 708 until the master repeater 106 determines at 710, 712 that F2 is no longer active, or in other words that the MIMO signal is no longer being received.
  • the master repeater 106 communicates with the slave repeater 108 to force the slave repeater 108 to operate in the RTS/CTS Mode.
  • the master repeater 106 determines that it has not received an RTS packet transmitted from the transmitting network station 102 on F2, then the master repeater 106 determines that the network is operating in, for example, a CTS to Self Mode in which the transmitting network station 102 sends the CTS packet to reserve the frequency (Fl or F2) for a predetermined time to send the MEVIO signal.
  • the master repeater 106 communicates with the slave repeater 108 to force the slave repeater 108 to operate in the CTS To Self Mode in a manner that is synchronous with the operation of the master repeater 108 by turning on its transmitter for the predetermined time indicated by the CTS packet. Therefore, at 710 and 712 both the master and slave repeaters 106, 108 receive on Fl and transmit on F2 until the master repeater 106 determines at 710 that F2 is no longer active.
  • FIG. 7 is a flow diagram illustrating how the protocol based synch mode of operation works at the slave repeater 108 when transmit direction is determined based on the contents of MIMO packets encapsulated in payload data packets transmitted from a network station.
  • MIMO packets encapsulated in payload data packets transmitted from a network station.
  • Such encapsulated MBVIO packets enable the master repeater 106 to determine when to initiate MIMO transmission and in what direction to transmit the MIMO packet. The master repeater then continues to transmit non-MIMO as well as MIMO packets even when the slave operates to only transmit MIMO packets.
  • the slave repeater 108 operates in normal, non-translating WLAN repeater mode and receives incoming signals.
  • the slave repeater 108 determines through messaging with the master repeater 106 whether the payload of a received packet includes an encapsulated MIMO packet. If the master repeater 106 determines that the payload does include an encapsulated MIMO packet, at 806 the slave repeater 108 determines based on communication with the master repeater 106 whether the payload was received on Fl or F2, and also determines the length of the payload packet.
  • the slave repeater 108 turns on in the transmit direction for a duration corresponding to the length of the MIMO packet to transmit (and receive) MIMO packets in a synchronous manner. The slave repeater 108 then monitors the transmission of the encapsulated packet at 810 and continues at 812 to transmit the MEVIO packet until the entire encapsulated packet has been sent.
  • the RTS/CTS (and CTS to Self) method of determining transmit direction is preferable during transmission of large data packets, such as for transmission of streaming video.
  • the encapsulated data method of determining transmit direction is preferable when shorter packets are being transmitted, such as in Internet surfing applications.
  • the network 100 may be alternatively configured using non- frequency translating physical layer repeaters rather than the frequency translating physical layer repeaters 106, 108 as shown in FIG. 1.
  • non-frequency translating repeaters would be implemented by, for example, using antennas that were separate from the repeaters, by using repeaters with directional antennas, or by reducing the gain of the antennas in conjunction with synch integration.

Abstract

A wireless network includes at least one Multiple Input Multiple Output (MIMO) wireless network station (102, 104) and two or more physical layer repeaters (106, 108). Each of the physical layer repeaters is for receiving a wireless signal (F1 ) to or from the at least one MIMO wireless network station and re-transmitting the wireless signal (F2) while continuing to receive the wireless signal. The repeaters may be either frequency translating repeaters or non-frequency translating repeaters.

Description

PHYSICAL LAYER REPEATER CONFIGURATION FOR INCREASING MIMO PERFORMANCE
BACKGROUND OF THE INVENTION
[0001] Several standard protocols for wireless local area networks, commonly referred to as WLANs, are becoming popular. These include protocols such as 802.11 (as set forth in the 802.11 wireless standards), Wi-MAX, and Bluetooth. The standard wireless protocol with the most commercial success to date is the 802.1 Ig protocol.
[0002] While the specifications of products utilizing the above standard wireless protocols commonly indicate data rates on the order of, for example, 54 MBPS and ranges on the order of, for example, 100 meters, these performance levels are rarely, if ever, realized. This lack of performance is due to attenuation of the radiation paths of RF signals, which are typically in the range of 2.4 GHz, in an indoor environment. Base to receiver ranges are generally less than the coverage range required in a typical home, and maybe as little as 10 to 15 meters. Further, in structures that have split floor plans, such as ranch style or two story homes, or that are constructed of materials that attenuate RF signals, areas in which wireless coverage is needed may be physically separated by distances outside of the range of, for example, an 802.11 protocol based system. Finally, the data rates of the above standard wireless protocols are dependent on the signal strength. As distances in the area of coverage increase, wireless system performance
typically decreases. [0003] One way to increase the range of wireless systems is by the use of repeaters. This is a common practice in the mobile wireless industry. One significant complication is that the system receivers and transmitters operate at the same frequency for a WLAN utilizing an 802.11 or an 802.16 WMAN wireless protocol. Such operation is commonly referred to as time division duplexing (TDD). This operation is significantly different than the operation of many cellular repeater systems, such as those systems based on IS- 136, IS-95 or IS-2000 standards, where the receive and transmit bands are separated by a duplexing frequency offset. Frequency division duplexing makes the repeater operation easier than in the case where the receiver and transmitter channels are on the same frequency.
[0004] There are, however, cellular mobile systems that separate the receive and transmit channels by time rather than by frequency. These systems utilize scheduled times for specific uplink/downlink transmissions. Repeaters for these systems are more easily built, as the transmission and reception times are well known and are broadcast by a base station. Receivers and transmitters for these systems may be isolated by any number of means including physical separation, antenna patterns, or polarization isolation.
[0005] The random packet nature of the WLAN protocols provides no defined receive and transmit periods. The packets from each wireless network node are spontaneously generated and transmitted and are not temporally predictable. A protocol referred to as a collision avoidance and random back-off protocol is used to avoid two units transmitting their packets at the same time. For an 802.11 standard protocol, this is referred to as the distributed coordination function (DCF). In the case where the receive and transmit times are known, synchronization of the timing can be problematic and can drive up the expense of the product.
[0006] WLAN repeaters have unique constraints due to the above spontaneous transmission capabilities and therefore require a unique solution. Another unique requirement is that, since these repeaters use the same frequency for receive and transmit, some form of isolation must exist between the receiver and transmitter of each repeater. While existing CDMA systems employ directional antennas and physical separation of the receive and transmit antennas to achieve this isolation, such techniques are not practical for WLAN repeaters in many operating environments such as in the home where lengthy cabling is not desirable or may be too costly.
[0007] Further, in a WLAN environment utilizing the proposed IEEE 802.1 In standard protocol, wireless devices rely on multi-path transmissions to increase data rates and range. However, in a typical home WLAN environment, multi-path transmission capability and spatial diversity are limited for many of the same reasons discussed above in connection with lack of performance of wireless products in a home or indoor
environment. SUMMARY OF THE INVENTION
[0008] The present invention provides a wireless network with at least one Multiple Input Multiple Output (MMO) wireless network station and two or more physical layer repeaters each for receiving wireless signal to or from the at least one MIMO wireless network station and each for re-transmitting the wireless signal while continuing to receive the wireless signal.
[0009] In the above wireless network, at least one MIMO wireless network station and the two or more physical layer repeaters may operate according to a protocol, such as the proposed 802.1 In protocol. Each repeater can receive and transmit a wireless signal from or to the at least one MEVIO wireless network station on a first frequency and synchronously re-transmitting the wireless signal while continuing to receive the wireless signal on a second frequency. Li addition, the repeaters may be time division duplexed (TDD), or, alternatively, may be frequency division duplexed (FDD), and can be configured to transmit or receive the wireless signals to or from the MIMO wireless network station and re-transmitting the wireless signals in a synchronized manner when operating in a translating mode. In addition, the at least one MDVIO wireless network station comprises a frequency translating MEVIO wireless network station. It will be appreciated that in accordance with 802.1 In proposed standards, in a MEVIO environment, an access point configured as a MIMO wireless network station has two or possibly more antenna for transmitting a signal in a diversity like configuration and the
MEVIO client has two or more receive antenna for diversity reception. [0010] According to another embodiment, the present invention provides a time division duplex (TDD) wireless repeater configuration including a first TDD wireless repeater capable of recognizing that it is operating in a Multiple Input Multiple Output (MIMO) wireless network, and a second TDD wireless repeater spatially separated from the first TDD wireless repeater by a predetermined distance or may be in the same package and may not be physically seperate. The first TDD wireless repeater is capable of identifying a presence of the second TDD wireless repeater, entering into a mode with the second TDD wireless repeater to receive wireless transmissions in a synchronous manner with the second TDD wireless repeater on a same first frequency, and of retransmitting the wireless transmissions in a manner that is synchronous with the second TDD wireless repeater on a same second frequency, hi an alternative embodiment, two or more repeaters may be physically integrated into the same package simplifying synchronization control. In yet another alternative embodiment, the physical layer repeaters can be coupled using telephone wiring or household wiring is described in greater detail in the applications noted below, hi still another alternative embodiment, the physical layer repeaters can repeat in a non-frequency translating mode where receive and transmit isolation becomes the key issue. Accordingly, physical separation of the client side and AP side antennae must be achieved using a variety of methods such as using household wiring, again, as discussed in the applications noted below.
[0011] In the above configuration, the first TDD wireless repeater may be a master repeater, and the second TDD wireless repeater a slave repeater. The master repeater, which may be a repeater that is first to be activated, or a repeater having the strongest signal power with respect to a MMO base station, is for re-transmitting the wireless transmissions independently of the slave repeater, and the slave repeater is for retransmitting the wireless transmissions only after re-transmission of the wireless transmissions by the master repeater. The master repeater is for communicating a master/slave protocol to the slave repeater that activates the slave repeater in a slave mode. Thereafter, the slave repeater is for re-transmitting the wireless transmissions during periods of MIMO operation as designated by MIMO device generated messages, and the master repeater is for re-transmitting the wireless transmissions during both MEVIO and non-MIMO periods of operation. The slave repeater may include an oscillation detection circuit for identifying when a frequency translation direction is erroneously chosen by the master repeater and for terminating re-transmission of the wireless transmissions. The first TDD wireless repeater and the second TDD wireless repeater may also be a first TDD frequency translating wireless repeater and a second TDD frequency translating wireless repeater.
[0012] According to yet another embodiment, a time division duplex (TDD) wireless repeater configuration includes a first TDD wireless repeater capable of detecting transmissions from Multiple Input Multiple Output (MIMO) enabled devices in a wireless network, and a second TDD wireless repeater also capable of detecting the transmissions from the MEVIO enabled devices. The first TDD wireless repeater and the second TDD wireless repeater begin to re-transmit in a synchronous mode with one
another upon at least one of the first TDD wireless repeater and the second TDD wireless
repeater detecting the transmissions from the MIMO enabled devices. BRIEF DESCRIPTION OF THE DRAWINGS
[0013] FIG. 1 is a block diagram of a wireless network including a frequency translating physical layer repeater configuration according to a preferred embodiment of the present invention;
[0014] FIG. 2 is a schematic block diagram of a frequency translating physical layer repeater such as those shown in FIG. 1 ;
[0015] FIG. 3 is a schematic block diagram of the digital sequencer in FIG. 2;
[0016] FIG. 4 is a flow diagram illustrating the functions performed by the digital logic shown in FIG. 3 in determining whether a received signal is present on Fl or F2 when repeaters are designed to operate in a physical layer mode of operation during MIMO operation;
[0017] FIG. 5 is a diagram illustrating sequential packet transmission in the network in FIG. 1;
[0018] FIG. 6 is a flow diagram illustrating how a master repeater such as that shown in FIG. 1 and operating in MIMO mode determines the direction in which to repeat a MIMO signal based on the transmission, or lack of transmission, of RTS and CTS signals.
[0019] FIG. 7 is a flow diagram illustrating the protocol based synch mode of operation at a slave repeater when a transmit direction is determined based on the contents of MIMO packets encapsulated in payload data packets transmitted from a
network station. DETAILED DESCRIPTION OF THE INVENTION
[0020] FIG. 1 illustrates a multi-input, multi-output (MMO) protocol-based network (network) 100, such as is described in IEEE 802.11 draft proposals from TGnSync and WWise consortiums that enables consistent independent signal paths to be generated even in environments, such as home environments, in which multi-path transmission capability and spatial diversity are typically limited. MIMO transceivers 102, 104, hereinafter referred to as network stations, may be any type of wireless communications devices including client devices, MEVIO-enabled access points, or any other type of known network node capable of operating in MIMO mode and of transmitting and/or receiving data in a wireless environment based on a wireless protocol such as 802.1 Ib, 802.1 Ig, or 802.1 In (proposed), in the network 100. The network stations 102, 104 are capable of communicating with one another over distances outside of normal coverage ranges through wireless physical layer repeaters (repeaters) 106, 108.
[0021] As will be discussed in detail below, the repeaters 106, 108, which may be either TDD or FDD type frequency translating repeaters, are capable of reacting to the particular protocol implemented in the network 100 in which they operate. In other words, the repeaters 106, 108 are capable of addressing the backwards compatibility issue that will exist in the network, as the network must be capable of enabling both current generation and legacy network stations to communicate regardless of the respective operating protocols of the devices. [0022] The repeaters 106, 108 react based on one of two fundamental modes of synchronous operation. A first exemplary mode of operation is a physical layer mode of operation in which the repeaters 106, 108 operate in a master/slave relationship during MIMO signal transmission irrespective of the underlying message protocol. A second mode of operation is a protocol based mode of operation in which the repeaters 106, 108 may or may not operate in a master/slave relationship and are triggered into MIMO operation based on an underlying protocol detected during MIMO transmissions to/from network stations that are communicating in the network 100. Regardless of the mode of operation, a repeater is dedicated as a master repeater based on, for example, it being the first repeater to be activated, or it being the repeater having the strongest signal power with respect to a MIMO base station (not shown), with all other repeaters automatically being designated as slave repeaters. In addition, the repeater operating as the slave repeater preferably includes an oscillation detection circuit for identifying when a frequency translation direction is erroneously chosen by the master repeater and for terminating re-transmission of the wireless transmissions. Each of these modes of operation will be discussed below in detail.
[0023] FIG. 2 is an exemplary system diagram 200 showing the components of the wireless repeaters 106, 108 when the repeaters 106, 108 are designed to operate in the above-mentioned physical layer mode of operation. Key features of the wireless repeaters 106, 108 are the ability receive a signal and translate the frequency of the received signal from a first bi-directional frequency (Fl) to a second bi-directional frequency (F2), or vice versa, with very little distortion of the signal. This is made possible by fast signal detection and delay of the received signal long enough to determine proper control actions.
[0024] Radio waves propagate from various wireless devices such as the network stations 102, 104 in FIG. 1 and become incident to antenna 300, which, as is known to those of ordinary skill in the art, is an electromagnetic to voltage transducer. In a preferred embodiment this could be a single omni directional antenna tuned and matched to the frequencies of interest. Other embodiments could include, but are not limited to, directional planar antennas, dual antenna elements, polarized antenna elements and directional arrays.
[0025] The antenna 300 shown in FIG. 2 transforms received radio waves to a voltage signal and feeds the voltage signal to an isolator 305. Alternatively, the isolator 305 may not be included depending upon the type of antenna configuration utilized. Two such antenna configurations will be described below. The isolator 305 allows a signal to pass from the antenna 300 to a Low Noise Amplifier (LNA) 310 and from a power amplifier 325 to the antenna 300, but blocks or isolates the LNA 310 from the power amplifier 325. Other embodiments of the isolator 305 could include, but are not limited to, circulators, directional couplers, splitters, and switches. A signal received and transformed by the antenna 300 that passes through the isolator 305 is fed to the LNA 310, which amplifies the signal and sets the noise level at that point. A signal amplified by the LNA 310 is fed to an RF splitter 315, which performs an RF power splitting, or coupling, function on the signal to split the signal into two different paths. The splitter 315 could also be a directional coupler or any device that can separate one signal into two signals.
[0026] At this point, one skilled in the art will readily recognize that the antenna 300, the LNA 310 and the RF splitter 315 are the primary components forming a receiver. Further, one skilled in the art will readily recognize that the antenna 300, the power amplifier 325, the amplifier 330, the filter 335, the switch 345 and the mixer 350 are the primary components forming a transmitter.
[0027] Mixers 320, 321 are frequency conversion devices that mix signals passed from the splitter 315 with signals output from the local oscillators 340, 341 at respective frequencies designated as LOl, LO2 to produce intermediate frequency (IF) or typically lower frequency signals. The local oscillators 340, 341 are tuned to the different frequencies LOl, LO2 such that two different signals at two different frequencies fed from the splitter 315 can be converted to a common IF frequency. For example, if signals at two different frequencies Fl=2.412GHz and F2=2.462 are output from the splitter 315 to the mixers 320, 321, respectively, and assuming the mixer 320 is performing a low side mixing function and the mixer 321 is performing a high side mixing function, then with the local oscillator 340 tuned to L01=2.342GHz and the local oscillator 341 tuned to LO2=2.532GHz and providing inputs to the mixers 320, 321, respectively, the signals output from mixers 320, 321 would each have their frequencies transformed to an EF of
70MHz. [0028] The splitters 323, 324, which operate the same as the splitter 315 described above, separate the IF signals output from the respective mixers 320, 321 into two different paths. One path from each of the splitters 323, 324 goes to filters 360, 361, respectively, while the other path from each of the splitters 323, 324 goes to filters 365, 366, respectively.
[0029] The filters 360, 361, which are preferably band pass filters with delays, remove all outputs from the mixing operation except the desired frequency components. Preferably, the filters 360, 361 have a sufficient time delay such that the detection and control unit 362 can detect which of the two RF frequencies is present and perform control functions described below prior to the signals being available at the output of the filters 360, 361, as detectors 370, 371 are in parallel with the delay filters 360, 361. Methods of delaying electrical signals are well known to those of ordinary skill in the art, and include but are not limited to Surface Acoustic Wave (SAW) devices and the like. However, if it is acceptable to truncate a portion of the first part of the RF signal, then the filters 360, 361 would not need specified delays.
[0030] One skilled in the art will readily recognize that the mixers 320, 321, the splitters 323, 324 and the filters 360, 361 are the primary components forming a frequency converter.
[0031] The filters 365, 366 in the detection and control unit 362 also perform the same type of band pass filtering as the filters 360, 361. The main difference is that the filters 365, 366 are preferably fast filters without specified long time delays. Additionally, the filters 365, 366 preferably do not require the same level of filtering performance as the filters 360, 361, although one skilled in the art would recognize that varying filter performance within the confines of performing the filtering objective is a design choice. One skilled in the art would also recognize that filters or devices other than band pass filters might be used to perform the above discussed band pass functions.
[0032] Power detectors 370, 371 are simple power detection devices that detect if a signal is present on either of the respective frequencies Fl, F2 and provide a proportional voltage output if the signal is present. Many types of analog detectors that perform this function may be used. For example, such detectors could include, but are not limited to, diode detectors. Such diode detection could be performed at RF, IF or base band. Detectors providing higher performance than simple power detectors may be used as well. These detectors may be implemented as matched filtering at RF or IF using SAW devices, and matched filtering or correlation at base band after analog to digital conversion. The power detectors 370, 371 are utilized to determine the presence of a wireless transmission on one of the two IF channels by comparing signals on the two IF channels with a threshold. Such a threshold could be predetermined or calculated based on monitoring the channels over time to establish a noise floor.
[0033] Further, the power detectors 370, 371 may be used to determine start and stop times of a detected transmission. The proportional voltage output by one of the power detectors 370, 371 in response to signal detection will be used by the digital sequencer 385 to detect whether a received signal is on Fl or F2 and to control the retransmission of the signal as is described below. One of ordinary skill in the art will recognize that the power detection can be placed earlier or later in the signal processing path, as it is possible to detect signals so that the retransmission process may be switched on or off. Further, one of ordinary skill in the art will recognize that techniques for determining or limiting transmission time can be employed, including but not limited to placing a time limit on retransmission using a timer.
[0034] The filters 375, 376 are low pass filters and preferably have narrower bandwidths than the filters 365, 366. The filters 375, 376 are required to remove the high frequency components that remain after signal detection in the power detectors 370, 371 and to provide an increase in signal to noise ratio by providing processing gain by reducing the detection signal bandwidth. The signals output from low pass filters 375, 376 are input to the digital sequencer 385, which is configured to detect the presence of the received signal on either Fl or F2 based on appropriate control functions discussed below. The digital sequencer has the ability to transmit and receive (TX / RX), as it includes a modem that is capable of monitoring MTMO-based protocol messaging between nodes in the network 100. In addition, the digital sequencer 385 is capable of communicating with other like repeaters through an 802.11, or similar, protocol.
[0035] Feedback to a user can be controlled by the digital sequencer 385 via an indicator 390 which could be, but is not limited to, a series of light emitting diodes. Feedback to the user could be an indication that the wireless repeaters 106, 108 is in an acceptable location such that either or both frequencies Fl, F2 from the wireless access point 100 and the network station 105 can be detected, or that power is supplied to the wireless repeaters 106, 108.
[0036] Once either of the frequencies Fl, F2 is detected, the digital sequencer 385 controls switches 345, 355. The switch 355 is switched to allow the detected signal, either on Fl or F2, which is at an IF frequency, to be routed to the input of a frequency converter 350, which is another frequency translation device similar to the mixers 320, 321. Additionally, the digital sequencer 385 will set the switch 345 to allow a signal from the appropriate one of the local oscillators 340, 341 to be routed to the mixer 350 so that the IF frequency at the input to the frequency converter 350 is translated to the proper frequency at the output thereof.
[0001 ] While many of the concepts herein are discussed and described herein in connection with frequency translating repeaters, it will be appreciated that, in alternative embodiments, a non- frequency translating approach may be used. Further, such approaches may be used in connection with the use of household wiring as described in co-pending U.S. Patent Application Serial No. 10/465,817 entitled "WIRELESS LOCAL AREA NETWORK USING EXISTING WIRING AND WIRELESS REPEATER MODULES," and under protocols such as 802.16 as described for example, in co- pending U.S. Patent Application Serial No. 11/127,320 entitled "NON-FREQUENCY TRANSLATING REPEATER WITH DETECTION AND MEDIA ACCESS
CONTROL." [0037] It should be noted that problems can arise in terms of frequency error in a MIMO scenario where two or more repeaters are used to repeat a signal from a first frequency channel to a second frequency channel due to variance in local oscillator or reference frequencies. Since the error level in the typical LO is in the order of 10-30 ppm, normal repeater operations produce an error proportional to the net frequency. For example, if the repeater is repeating a signal of 2.4 GHz, a 10 ppm frequency error in the LO results in a 24 KHz frequency error in the signal. Such error is relatively small in proportion to the base frequency and, for single repeater operations, can be handled internally within the repeater with negligible effect. However, when the error is transmitted to another repeater with its own error, the potential clock variance of 10- 30ppm of the second repeater becomes more significant relative to the error transmitted from the first repeater and problems can arise due to the cascading frequency error.
[0038] One solution to the above noted problem is to determine a frequency offset of the incoming signal. It will be appreciated that the frequency offset or frequency offset estimate value is often available as a standard output of a typical MODEM or MODEM section of a wireless receiver such as a MODEM 363. The MODEM 363 is configured to be selectively coupled to one of the intermediate frequency signal lines, such as the output of mixers 320 and 321. The MODEM 363 is also coupled on the output side to control switch 355. The frequency offset output of the MODEM 363 can be coupled to the detection and control unit 362 and in particular is coupled to the digital sequencer 385. When a frequency offset is determined, it can be used to correct or synchronize the receiving repeater to the transmitting repeater so that the end-to-end frequency error is reduced, minimzed, or otherwise eliminated. Various approaches can be used such as open loop control or closed loop control using the frequency offset value or estimate. A loop filter can further be included to minimize noise values in the error estimate and/or the error estimate can be integrated over a time interval to remove at least transient noise, as is well understood in the art. The corresponding one of local oscillator 340 and 341 corresponding to the detected frequency and to the transmitter section can be adjusted using control lines as shown, for example, in FIG. 2. As will be appreciated the local oscillator can be a tunable frequency synthesizer, a voltage controller oscillator (VCO), or some other type of local reference.
[0039] An example of operation of the wireless repeaters 106, 108 will now be described using the frequency in the previous examples: Fl = 2.412GF£z; F2 = 2.462GHzIF = 70MHz; LOl = 2.342GHz; and LO2 = 2.532GHz. Assume Fl is detected and is output from the filter 361. The switch 355 is set to receive its input from the filter 361, which is Fl translated to 70MHz. Since it is desired to retransmit Fl at F2 = 2.462GHz, then the switch 345 is connected to the signal from the local oscillator 341. The output of the frequency translator 350 includes two components (LO2-IF) and (LO2+IF). The desired component is LO2-IF or 2.532GHz - 70MHz = 2.462GHz. Since the frequency translator 350 produces the sum and difference of switch 345 output and switch 355 output, then a filter 335 is required to remove the undesirable term. In the example above, the undesirable term would be LO2+IF or 2.602GHZ. [0040] The filter 335 performs the required filtering operations. The same is true if F2 was detected. A sum and difference product will occur, and the filter 335 must filter out the undesirable component. The translated and filtered version of the received signal is applied to the amplifier 330, which is preferably a variable gain amplifier. The amplifier 330 applies a variable amount of gain under control of the digital sequencer 385 to make sure that the signal being feed to the amplifier 325 is in the target transmit power range. The amplifier 325 is preferably the final power amplification stage for the transmit signal. It feeds its output to the isolator 305, which then sends the signal to the antenna 300. The signal is then converted back to an electromagnetic field or radio wave by the antenna 300 in a manner well known to those of ordinary skill in the art. This radio wave is a frequency translated and power amplified version of what was received by the antenna 300.
[0041] The above descriptions and example assumes frequencies Fl and F2. It is also possible to operate with any frequencies Fl and F2 by moving the frequencies LOl, LO2 of the local oscillators 340, 341 to different defined channels and checking for power detection at those channels. Once the channels are determined, the digital sequencer 385 will use those frequencies, and all operations will be performed as described above. Control of the frequencies of the local oscillators 340, 341 can be accomplished by the digital sequencer 385 or by user tuning. In the case of user tuning for the control of the selected frequencies, the repeater would have a set of switches (rotary or other) that a technician would set at the time of installation to specify the frequencies of operation. [0042] Those of ordinary skill in the art will recognize that the point at which the input signal is down converted from RF to a digital signal may be altered such that more or fewer functions are performed in the RF domain or the digital domain. Further, multiple devices such as the network stations 102, 104 may be utilized in the present invention. The repeaters 106, 108 will detect and retransmit signals from any of these devices. The network stations 102, 104 communicate with each other within the protocol of a system (such as 802.1 In) that provides that the desired recipient of the retransmitted signal is identified. Thus, the repeaters 106, 108 may serve many network stations.
[0043] The digital sequencer 385 is shown in more detail in FIG. 3. It will be appreciated that inputs 400, 410 are preferably coupled with the outputs of filter 375 and the filter 376 shown in FIG. 2. Thus, inputs 400, 410 are preferably coupled to threshold comparators 401, 411, respectively. The reference threshold of comparators 401, 411 is preferably set by digital to analog converters (DAC) 404, 414 which may be internal to the digital sequencer 385 or may be provided externally, and may further be simple pulse width modulators or pulse density modulators. The DACs 404, 414 are preferably controlled by a processor 406 and are preferably programmed based upon factors such as, for example, a probability of detection and a probability of false detection as derived by various algorithms known to those of ordinary skill in the art.
[0044] Detection algorithms may be based on a statistical analysis of samples of a received signal at ADCs 402, 412 and can include level crossing rates, average multipliers, and the like. Alternatively, a SAW tooth control algorithm may be used to observe the "qualified" false detection rate, for example, on the comparators 401, 411. The SAW tooth control algorithm works by determining when a false detection has occurred and further qualifying the false detection using known parameters of the relevant packet protocol, such as packet duration. If a threshold is crossed for only short periods of time, shorter than the packet duration, a false detection is most probable. It should be noted that valid ranges for packet durations are defined in accordance with protocol standards and specifications, such as 802.11. If a detection interval is too short, the detection cannot be associated with a valid 802.11 packet. If a detection interval is too long, the detection also cannot be associated with a valid 802.11 packet.
[0045] Accordingly, it would be likely that in such situations, the detection threshold is set too low, interference may be present, the repeater could be oscillating, or the like. A SAW tooth control algorithm adds an increment to the threshold for the comparator every time a false detection occurs, then subtracts a small amount from the threshold every time there is no detection. It will be appreciated that the relative increments and decrements of the detection threshold level will determine the false alarm rate, and the time constant of the resulting control loop. While SAW tooth control schemes have been effectively used in reverse link "outer loop power control" in, for example, IS-95 CDMA base stations, the application of a SAW tooth control loop to detection in accordance with various exemplary embodiments, provides advantages not previously appreciated.
[0046] For detection of signals on the bi-directional frequencies Fl and F2, the output signal 415 from comparator 411 is input to digital logic 416, which produces and outputs a logic 0 when a signal is present on F2. When a signal is present on Fl, the output signal 405 from the comparator 401 is input to the digital logic 416, which in turn produces and outputs a logic 1 or high level.
[0047] FIG. 4 is a flow diagram illustrating the functions performed by the digital logic 416 in determining whether a received signal is present on Fl or F2 when repeaters are designed to operate in the above-discussed physical layer mode of operation during MEVIO operation. It will be understood by one skilled in the art that the repeaters 106, 108 when operating in the physical layer synch mode do not listen to the protocol message transmitted by the network stations 102, 104. Rather, the repeaters 106, 108 operate in a master/slave mode in which the master is capable of always functioning in both a normal WLAN and a MIMO repeating mode, and in which the slave repeater must detect signals being received and repeated by the master before being triggered to operate. For purposes of discussion, hereinafter the network station 102 will be referred to as the transmitting network station 102, the network station 104 will be referred to as the receiving network station 104, the repeater 106 will be referred to when applicable as the master repeater 106, and the repeater 108 will be referred to as the slave repeater 108.
[0048] As shown at 502 in FIG. 4, the slave repeater 108 is in an idle mode during which its transmit function is off. At 504, the slave repeater 108 determines, by receiving messages from the master repeater 106, whether the master repeater 106 has received an incoming MIMO signal. If the master repeater 106 has received an incoming MIMO signal, the slave repeater 108, through messaging received from the master repeater 108 via the modem in the digital sequencer 385, determines that the signal is transmitted by the transmitting network station 102 on Fl, and therefore must be transmitted by both the master repeater 106 and the slave repeater 108 on F2. At 506 and 508, the slave repeater 108 waits until both MIMO signals have been respectively transmitted and received on F2 and Fl. Although a slight delay, such as, for example, about 250 ns, is associated with the detection of F2, such delay is considered negligible for purposes of the operation of the repeaters in MIMO mode. Once the presence of received and transmitted MMO signals is detected on both Fl and F2, at 510 the slave repeater 108 begins to transmit on F2 and to simultaneously receive on Fl in a manner that is synchronous with the master repeater 106, and continues to do so until at 512 it no longer detects the presence of a received signal on Fl.
[0049] If at 504 it is determined that the MMO signal is transmitted by the transmitting network station 102 on F2, the MMO signal therefore must be transmitted by both the master repeater 106 and the slave repeater 108 on F2. At 506 and 508, the slave repeater 108 waits with the above associated delay until both MMO signals have been respectively transmitted and received on Fl and F2. Once the presence of transmitted and received MMO signals is detected on both Fl and F2, at 510 the slave repeater 108 begins to transmit on F2 and to receive on Fl, and continues until at 512 it no longer detects the presence of a received signal on Fl .
[0050] In the above physical layer synch approach, both the master and the slave
repeaters 106, 108 are capable of operating in MIMO mode to determine the transmit/receive frequencies and the direction in which a MIMO signal is to be transmitted irrespective of the underlying system protocol.
[0051] The protocol based mode of MIMO operation will now be discussed with respect to the repeaters 106, 1OS. The protocol based mode of MIMO operation is based upon the triggering of MIMO operating modes at the master and slave repeaters 106, 108 by network station MIMO transmissions, enable the master and slave repeaters 106, 108 to determine on which frequency the MIMO signals are being transmitted. In connection with the protocol based mode of operation, three methods of determining the repeater transmit direction, hereinafter referred to as Request To Send / Clear To Send (RTS/CTS), Clear to Send To SeIf(CTS To Self), and encapsulated MIMO packet protocol related methods, will also be discussed.
[0052] FIG. 5 illustrates the packet transmission sequence of the transmitting network station 102, the receiving network station 104 and the master and slave repeaters 106, 108 as shown in FIG. 1 prior to and during repeater MEMO operation. At 602, the transmitting network station 102 transmits an RTS packet that includes data as to the duration of the MIMO packet to be subsequently sent. The master repeater 106 receives and transmits this RTS packet from the transmitting network station 102 to the receiving network station 104 in a normal WLAN, or non frequency translating, mode. As shown at 604, the receiving network station 104 then transmits a CTS packet that includes data as to the duration that the receiving network station 104 will wait for the MIMO packet to be transmitted from the transmitting network station 102. The master repeater 106 receives and transmits this CTS packet from the receiving network station 104 to the transmitting network station 102 in a normal WLAN5 or non-frequency translating, mode.
[0053] Subsequently, after the transmitting network station 102 receives the CTS packet, at 602, the transmitting network station then transmits the MIMO packet having a time duration (T), as defined either in the MIMO RTS packet and/or the MIMO CTS packet, to the receiving network station. At 606 and 608, both the master and slave repeaters 106, 108 are triggered and begin to operate in MIMO mode to transmit on F2 MEVIO packets received on Fl, or vice versa, depending upon the transmission direction, which is determined as follows.
[0054] FIG. 6 is a flow diagram illustrating how the master repeater 106 operating in MIMO mode determines the direction in which to repeat a MEVIO signal based on the transmission, or lack of transmission, of RTS and CTS signals. At 702, the master repeater 106 is in idle mode with its transmit function off. At 704, it detects whether it has received a CTS packet including MEVIO duration information transmitted from either the transmitting network station 102 or the receiving network station 104 on Fl. If the master repeater 106 detects receipt of the CTS packet, then at 706 the master repeater 106 determines if it had previously received an RTS packet transmitted from the transmitting network station 102 on F2. If so, the master repeater 106 determines that the message indicates that the network 100 is operating in the RTS/CTS Mode in which the client transmitting device 106 transmits the RTS packet, and in which the client receiving device transmits the CTS packet, prior to the client transmitting device 102 transmitting a MIMO signal. Both the master and slave repeaters 106, 108 transmit in a synchronous manner on Fl and receive on F2 as indicated at 708 until the master repeater 106 determines at 710, 712 that F2 is no longer active, or in other words that the MIMO signal is no longer being received. The master repeater 106 communicates with the slave repeater 108 to force the slave repeater 108 to operate in the RTS/CTS Mode.
[0055] If at 704 the master repeater 106 determines that it has not received an RTS packet transmitted from the transmitting network station 102 on F2, then the master repeater 106 determines that the network is operating in, for example, a CTS to Self Mode in which the transmitting network station 102 sends the CTS packet to reserve the frequency (Fl or F2) for a predetermined time to send the MEVIO signal. Upon determining that the network is operating in the CTS to Self Mode, the master repeater 106 communicates with the slave repeater 108 to force the slave repeater 108 to operate in the CTS To Self Mode in a manner that is synchronous with the operation of the master repeater 108 by turning on its transmitter for the predetermined time indicated by the CTS packet. Therefore, at 710 and 712 both the master and slave repeaters 106, 108 receive on Fl and transmit on F2 until the master repeater 106 determines at 710 that F2 is no longer active.
[0056] FIG. 7 is a flow diagram illustrating how the protocol based synch mode of operation works at the slave repeater 108 when transmit direction is determined based on the contents of MIMO packets encapsulated in payload data packets transmitted from a network station. Such encapsulated MBVIO packets enable the master repeater 106 to determine when to initiate MIMO transmission and in what direction to transmit the MIMO packet. The master repeater then continues to transmit non-MIMO as well as MIMO packets even when the slave operates to only transmit MIMO packets.
[0057] At 802, the slave repeater 108 operates in normal, non-translating WLAN repeater mode and receives incoming signals. At 804, the slave repeater 108 determines through messaging with the master repeater 106 whether the payload of a received packet includes an encapsulated MIMO packet. If the master repeater 106 determines that the payload does include an encapsulated MIMO packet, at 806 the slave repeater 108 determines based on communication with the master repeater 106 whether the payload was received on Fl or F2, and also determines the length of the payload packet. At 808, the slave repeater 108 turns on in the transmit direction for a duration corresponding to the length of the MIMO packet to transmit (and receive) MIMO packets in a synchronous manner. The slave repeater 108 then monitors the transmission of the encapsulated packet at 810 and continues at 812 to transmit the MEVIO packet until the entire encapsulated packet has been sent.
[0058] Regarding the above protocols under which the repeaters 106, 108 can be triggered into a protocol based synch mode of operation, the RTS/CTS (and CTS to Self) method of determining transmit direction is preferable during transmission of large data packets, such as for transmission of streaming video. The encapsulated data method of determining transmit direction is preferable when shorter packets are being transmitted, such as in Internet surfing applications. [0059] It should be noted that the network 100 may be alternatively configured using non- frequency translating physical layer repeaters rather than the frequency translating physical layer repeaters 106, 108 as shown in FIG. 1. Instead of utilizing repeaters that operated on the same frequency, non-frequency translating repeaters would be implemented by, for example, using antennas that were separate from the repeaters, by using repeaters with directional antennas, or by reducing the gain of the antennas in conjunction with synch integration.
[0060] The invention is described herein in detail with particular reference to presently preferred embodiments. However, it will be understood that variations and modifications can be effected within the scope and spirit of the invention.

Claims

CLAIMSWhat is claimed is:
1. A wireless network comprising: at least one Multiple Input Multiple Output (MIMO) wireless network station; two or more physical layer repeaters each for receiving wireless signal to or from the at least one MIMO wireless network station and each for re-transmitting the wireless signal while continuing to receive the wireless signal.
2. The wireless network of claim 1, wherein the at least one MIMO wireless network station and the two or more physical layer repeaters operate on an 802.1 In protocol.
3. The wireless network of claim 1, wherein the two or more physical layer repeaters are each for receiving a wireless signal to or from the at least one MIMO wireless network station on a first frequency and are each for synchronously re-transmitting the wireless signal while continuing to receive the wireless signal on a second frequency.
4. The wireless network of claim 1, wherein the two or more physical layer repeaters are time division duplex (TDD) repeaters.
5. The wireless network of claim 4, wherein the two or more division duplex (TDD) repeaters are each for receiving the wireless signals to or from the at least one MIMO wireless network station and are each for re-transmitting the wireless signals in a synchronized manner when operating in a translating mode.
6. The wireless network of claim 4, wherein the two or more division duplex (TDD) repeaters are each for receiving the wireless signals to or from the at least one MIMO wireless network station and are each for re-transmitting the wireless signals in a synchronized manner when operating in a non-frequency translating mode.
7. The wireless network of claim 1 , wherein the two or more physical layer repeaters are frequency division duplex (FDD) repeaters.
8. The wireless network of claim 1, wherein the two or more physical layer repeaters are non-frequency translating repeaters.
9. A time division duplex (TDD) wireless repeater configuration, comprising: a first TDD wireless repeater capable of recognizing that it is operating in a
Multiple Input Multiple Output (MEV1O) wireless network; a second TDD wireless repeater spatially separated from the first TDD wireless repeater; wherein the first TDD wireless repeater is capable of identifying a presence of the second TDD wireless repeater, entering into a mode with the second TDD wireless repeater to receive wireless transmissions in a synchronous manner with the second TDD wireless repeater on a same first frequency, and of re-transmitting the wireless transmissions in a manner that is synchronous with the second TDD wireless repeater on a same second frequency.
10. The TDD wireless repeater configuration of claim 9, wherein the first TDD wireless repeater comprises a master repeater and the second TDD wireless repeater comprises a slave repeater.
11. The TDD wireless repeater configuration of claim 10, wherein the master repeater is for re-transmitting the wireless transmissions independently of the slave repeater, and the slave repeater is for re-transmitting the wireless transmissions only after retransmission of the wireless transmissions by the master repeater.
12. The TDD wireless repeater configuration of claim 11 , wherein the master repeater is for communicating a master/slave protocol to the slave repeater that activates the slave repeater in a slave mode.
13. The TDD wireless repeater configuration of claim 10, wherein the slave repeater includes an oscillation detection circuit for identifying when a frequency translation direction is erroneously chosen by the master repeater and for terminating re-transmission of the wireless transmissions.
14. The TDD wireless repeater configuration of claim 10, wherein the slave repeater is for re-transmitting the wireless transmissions during periods of MIMO operation as designated by MIMO device generated messages, and the master repeater is for retransmitting the wireless transmissions during both MEVIO and non-MIMO periods of operation.
15. The TDD wireless repeater configuration of claim 10, wherein the first TDD wireless repeater and the second TDD wireless repeater comprise a first TDD frequency translating wireless repeater and a second TDD frequency translating wireless repeater.
16. The TDD wireless repeater configuration of claim 10, wherein the master repeater comprises a repeater that is first to be activated, or a repeater having the strongest signal power with respect to a MIMO base station.
17. The TDD wireless repeater configuration of claim 10, wherein the first TDD wireless repeater and the second TDD wireless repeater comprise a first TDD non- frequency translating wireless repeater and a second TDD non- frequency translating wireless repeater.
18. A time division duplex (TDD) wireless repeater configuration, comprising: a first TDD wireless repeater capable of detecting transmissions from Multiple Input Multiple Output (MIMO) enabled devices in a wireless network; a second TDD wireless repeater also capable of detecting the transmissions from the MEVIO enabled devices; wherein the first TDD wireless repeater and the second TDD wireless repeater begin to retransmit in a synchronous mode with one another upon at least one of the first TDD wireless repeater and the second TDD wireless repeater detecting the transmissions from the MIMO enabled devices.
19. A time division duplex (TDD) wireless repeater configuration, comprising: a first TDD wireless repeater capable of detecting transmissions from Multiple Input Multiple Output (MIMO) enabled devices in a wireless network; a second TDD wireless repeater also capable of detecting the transmissions from the MIMO enabled devices; wherein: the first TDD wireless repeater and the second TDD wireless repeater begin to retransmit in a synchronous mode with one another upon at least one of the first TDD wireless repeater and the second TDD wireless repeater detecting the transmissions from the MEVIO enabled devices; and the first TDD wireless repeater and the second TDD wireless repeater configured to: detect a frequency offset between a frequency associated with the detected transmissions and a respective local frequency reference; and compensate for the frequency offset by adjusting the local frequency reference to reduce the frequency offset.
20. A time division duplex (TDD) wireless repeater configuration in accordance with claim 19, wherein the local frequency reference includes one of: a local oscillator, a tunable synthesizer, and a voltage controlled oscillator.
21. A time division duplex (TDD) wireless repeater configuration in accordance with claim 19, wherein the first TDD wireless repeater and the second TDD wireless repeater in detecting, are further configured to process an output of a MODEM section associated with the frequency offset.
22. A time division duplex (TDD) wireless repeater configuration in accordance with claim 19, wherein the first TDD wireless repeater and the second TDD wireless repeater in compensating, are further configured to input the frequency offset to a closed loop correction circuit coupled to the local frequency reference.
PCT/US2006/002900 2005-01-28 2006-01-27 Physical layer repeater configuration for increasing mino performance WO2006081405A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64738605P 2005-01-28 2005-01-28
US60/647,386 2005-01-28

Publications (2)

Publication Number Publication Date
WO2006081405A2 true WO2006081405A2 (en) 2006-08-03
WO2006081405A3 WO2006081405A3 (en) 2009-04-16

Family

ID=36741071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/002900 WO2006081405A2 (en) 2005-01-28 2006-01-27 Physical layer repeater configuration for increasing mino performance

Country Status (2)

Country Link
US (1) US8059727B2 (en)
WO (1) WO2006081405A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2070207A2 (en) * 2006-09-01 2009-06-17 Qualcomm Incorporated Repeater having dual receiver or transmitter antenna configuration with adaptation for increased isolation
US8885688B2 (en) 2002-10-01 2014-11-11 Qualcomm Incorporated Control message management in physical layer repeater

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1525678B1 (en) * 2002-06-21 2008-07-30 QUALCOMM Incorporated Wireless local area network repeater
US20060063484A1 (en) * 2002-10-24 2006-03-23 Proctor James A Jr Wireless local area network repeater with in-band control channel
US8559379B2 (en) 2006-09-21 2013-10-15 Qualcomm Incorporated Method and apparatus for mitigating oscillation between repeaters
JP4875164B2 (en) * 2006-10-26 2012-02-15 クゥアルコム・インコーポレイテッド Repeater technology for multiple inputs and multiple outputs using beamformers
US8565692B2 (en) * 2007-10-30 2013-10-22 Lantiq Deutschland Gmbh System and method for providing a versatile RF and analog front-end for wireless and wired networks
US20090141691A1 (en) * 2007-11-30 2009-06-04 Raj Kumar Jain Access Point for Wireless Local Area Network
US8594158B2 (en) * 2008-07-16 2013-11-26 Telefonaktiebolaget L M Ericsson (Publ) Base and repeater stations
US8270925B2 (en) * 2008-12-04 2012-09-18 Broadcom Corporation Extended antenna module and applications thereof
US8452232B2 (en) * 2009-08-18 2013-05-28 Intel Corporation Automatic on-off switching repeater for MIMO networks
WO2011062216A1 (en) * 2009-11-18 2011-05-26 日本電気株式会社 Relay device, relay method, and program
US8605604B1 (en) * 2009-12-23 2013-12-10 Marvell International Ltd. WLAN module test system
US8630211B2 (en) 2010-06-30 2014-01-14 Qualcomm Incorporated Hybrid radio architecture for repeaters using RF cancellation reference
US8532566B2 (en) * 2011-06-08 2013-09-10 Andrew Llc System and method for reducing desensitization of a base station transceiver for mobile wireless repeater systems
US8649418B1 (en) 2013-02-08 2014-02-11 CBF Networks, Inc. Enhancement of the channel propagation matrix order and rank for a wireless channel
US8422540B1 (en) 2012-06-21 2013-04-16 CBF Networks, Inc. Intelligent backhaul radio with zero division duplexing
US8804792B1 (en) * 2012-02-24 2014-08-12 Pericom Semiconductor Corporation Intermediary signal conditioning device with interruptible detection mode
KR102139721B1 (en) * 2013-08-29 2020-07-30 삼성전자주식회사 Apparatus and method for nested network cording for multipath protocol
US10784952B2 (en) * 2018-11-02 2020-09-22 Wistron Neweb Corporation Repeater
US11412471B2 (en) * 2020-04-20 2022-08-09 AR & NS Investment, LLC Repeater device with slave mode
CN113872658B (en) * 2020-06-30 2023-10-31 星宸科技股份有限公司 Wireless communication system and wireless signal extension device and method thereof
US20220345193A1 (en) * 2021-04-19 2022-10-27 Commscope Technologies Llc Systems and methods for reconfigurable repeaters for wireless telecommunications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061548A (en) * 1997-07-17 2000-05-09 Metawave Communications Corporation TDMA repeater eliminating feedback
US6690657B1 (en) * 2000-02-25 2004-02-10 Berkeley Concept Research Corporation Multichannel distributed wireless repeater network
US20040229563A1 (en) * 2003-02-14 2004-11-18 Kabushiki Kaisha Toshiba Communication network for indoor environment

Family Cites Families (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363250A (en) 1965-07-20 1968-01-09 Jacobson Irving Monitoring system for remote radio control
US4001691A (en) 1975-01-30 1977-01-04 Gruenberg Elliot Communications relay system
US4081752A (en) 1975-05-30 1978-03-28 Sanyo Electric Co., Ltd. Digital frequency synthesizer receiver
US4204016A (en) 1975-07-25 1980-05-20 Chavannes Marc A Reinforced paper products
US4000467A (en) 1975-10-24 1976-12-28 Bell Telephone Laboratories, Incorporated Automatic repeater stressing
GB1545623A (en) 1976-05-19 1979-05-10 Elap Transmission system and repeater stations therefor
GB1590826A (en) 1976-09-21 1981-06-10 Post Office Level stabilisers
US4368541A (en) 1980-06-30 1983-01-11 Evans Robert M Multiplexing arrangement for a plurality of voltage controlled filters
US4334323A (en) 1980-09-08 1982-06-08 Zenith Radio Corporation Self tracking tuner
FR2526609A1 (en) 1982-05-04 1983-11-10 Thomson Csf MULTI-PORT SIGNAL RECEIVER PROTECTS DISTURBING SIGNALS
CA1235751A (en) 1985-01-09 1988-04-26 Junji Namiki One frequency repeater for a digital microwave radio system with cancellation of transmitter-to-receiver interference
FR2592256B1 (en) 1985-12-20 1988-02-12 Trt Telecom Radio Electr DEVICE FOR CONTROLLING THE TRANSMIT POWER OF A RADIO BEAM
US4783843A (en) 1986-05-23 1988-11-08 Peninsula Engineering Group, Inc. Split band filter for cellular mobile radio
US4723302A (en) 1986-08-05 1988-02-02 A. C. Nielsen Company Method and apparatus for determining channel reception of a receiver
EP0286306B1 (en) 1987-04-03 1993-10-06 Fujitsu Limited Method and apparatus for vapor deposition of diamond
US5023930A (en) 1987-08-03 1991-06-11 Orion Industries, Inc. Booster with detectable boost operation
US4820568A (en) 1987-08-03 1989-04-11 Allied-Signal Inc. Composite and article using short length fibers
US4922259A (en) 1988-02-04 1990-05-01 Mcdonnell Douglas Corporation Microstrip patch antenna with omni-directional radiation pattern
JPH07109877B2 (en) 1988-10-07 1995-11-22 株式会社東芝 Semiconductor memory device and manufacturing method thereof
US5095528A (en) 1988-10-28 1992-03-10 Orion Industries, Inc. Repeater with feedback oscillation control
FR2646977B1 (en) 1989-05-10 1994-07-29 Thomson Csf METHOD AND DEVICE FOR TRANSMITTING INFORMATION BETWEEN RADIO TRANSCEIVERS OF THE SAME NETWORK OPERATING IN FREQUENCY ESCAPE
US5220562A (en) 1989-05-12 1993-06-15 Hitachi, Ltd. Bridge apparatus and a communication system between networks using the bridge apparatus
JPH0321884A (en) 1989-06-20 1991-01-30 Mitsubishi Electric Corp Radioactive material smampling device
US5485486A (en) 1989-11-07 1996-01-16 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5349463A (en) 1990-08-17 1994-09-20 Victor Company Of Japan Optical radio repeater with signal quality detection
JP2591338B2 (en) 1990-11-20 1997-03-19 松下電器産業株式会社 Sub-sampling device, interpolation device, transmitting device, receiving device, and recording medium
EP0495575B1 (en) 1991-01-18 1997-08-06 National Semiconductor Corporation Repeater interface controller
GB9102220D0 (en) 1991-02-01 1991-03-20 British Telecomm Method and apparatus for decoding video signals
US5280480A (en) 1991-02-21 1994-01-18 International Business Machines Corporation Source routing transparent bridge
US5678198A (en) 1991-05-22 1997-10-14 Southwestern Bell Technology Resources, Inc. System for controlling signal level at both ends of a transmission link, based upon a detected value
JPH0530000A (en) 1991-07-18 1993-02-05 Fujitsu Ltd Mobile body communication system
US5341364A (en) 1992-06-02 1994-08-23 At&T Bell Laboratories Distributed switching in bidirectional multiplex section-switched ringtransmission systems
GB2268374A (en) 1992-06-23 1994-01-05 Ibm Network addressing
JP2800567B2 (en) 1992-06-29 1998-09-21 日本電気株式会社 Wireless device for multipath communication
US5377255A (en) 1992-07-14 1994-12-27 Pcs Microcell International Inc. RF repeaters for time division duplex cordless telephone systems
US5408618A (en) 1992-07-31 1995-04-18 International Business Machines Corporation Automatic configuration mechanism
GB2272599A (en) 1992-11-12 1994-05-18 Nokia Telecommunications Oy A method of cellular radio communication and a cellular radio system for use in such method
AU672054B2 (en) 1992-12-30 1996-09-19 Radio Communication Systems Ltd. Bothway RF repeater for personal communications systems
US5333175A (en) 1993-01-28 1994-07-26 Bell Communications Research, Inc. Method and apparatus for dynamic power control in TDMA portable radio systems
US5371734A (en) 1993-01-29 1994-12-06 Digital Ocean, Inc. Medium access control protocol for wireless network
JPH06260866A (en) 1993-03-04 1994-09-16 Mitsubishi Electric Corp Automatic output power control circuit device
FR2703199B1 (en) 1993-03-26 1995-06-02 Matra Communication Radio transmission method using repeating spectrum inverting stations.
JPH06291697A (en) 1993-03-31 1994-10-18 Matsushita Electric Ind Co Ltd Transmitter receiver
US5373503A (en) 1993-04-30 1994-12-13 Information Technology, Inc. Group randomly addressed polling method
US5515376A (en) 1993-07-19 1996-05-07 Alantec, Inc. Communication apparatus and methods
FR2708814B1 (en) 1993-07-30 1995-09-01 Alcatel Mobile Comm France Method for covering the shadow areas of a radiocommunication network, and radio repeater for implementing this method.
JP3337795B2 (en) * 1993-12-10 2002-10-21 富士通株式会社 Relay device
US5471642A (en) 1994-01-28 1995-11-28 Palmer; James K. Re-broadcast system for a plurality of AM signals
FI108098B (en) 1994-03-03 2001-11-15 Nokia Networks Oy Method for controlling a subscriber station, radio system and subscriber station operating on a direct channel
US5519619A (en) 1994-03-14 1996-05-21 Motorola, Inc. Route planning method for hierarchical map routing and apparatus therefor
US5648984A (en) 1994-08-10 1997-07-15 Alcatel Networks Systems, Inc. Multidirectional repeater for data transmission between electrically isolated and/or physically different signal transmission media
US5832035A (en) 1994-09-20 1998-11-03 Time Domain Corporation Fast locking mechanism for channelized ultrawide-band communications
JPH0897762A (en) 1994-09-26 1996-04-12 Infuorabu:Kk Repeater for mobile communication
US5608755A (en) 1994-10-14 1997-03-04 Rakib; Selim Method and apparatus for implementing carrierless amplitude/phase encoding in a network
US5873028A (en) 1994-10-24 1999-02-16 Ntt Mobile Communications Network Inc. Transmission power control apparatus and method in a mobile communication system
US5727033A (en) 1994-11-30 1998-03-10 Lucent Technologies Inc. Symbol error based power control for mobile telecommunication system
US5684801A (en) 1994-12-30 1997-11-04 Lucent Technologies Portable wireless local area network
US5654979A (en) 1995-01-13 1997-08-05 Qualcomm Incorporated Cell site demodulation architecture for a spread spectrum multiple access communication systems
JPH08242475A (en) 1995-03-06 1996-09-17 Toshiba Corp Method for call reception and call transmission for private branch of exchange
US5651010A (en) 1995-03-16 1997-07-22 Bell Atlantic Network Services, Inc. Simultaneous overlapping broadcasting of digital programs
GB2299494B (en) 1995-03-30 1999-11-03 Northern Telecom Ltd Communications Repeater
JP3355467B2 (en) 1995-03-31 2002-12-09 京セラ株式会社 PHS line repeater
MY121893A (en) 1995-04-28 2006-03-31 Qualcomm Inc Method and apparatus for providing variable rate data in a communications system using statistical multiplexing.
US6535732B1 (en) 1995-05-04 2003-03-18 Interwave Communications International, Ltd. Cellular network having a concentrated base transceiver station and a plurality of remote transceivers
US6101400A (en) 1997-08-20 2000-08-08 Interwave Communications, Inc. Methods and apparatus for improved base station transceivers
US5784683A (en) 1995-05-16 1998-07-21 Bell Atlantic Network Services, Inc. Shared use video processing systems for distributing program signals from multiplexed digitized information signals
US5697052A (en) 1995-07-05 1997-12-09 Treatch; James E. Cellular specialized mobile radio system
US5754540A (en) 1995-07-18 1998-05-19 Macronix International Co., Ltd. Expandable integrated circuit multiport repeater controller with multiple media independent interfaces and mixed media connections
US5890055A (en) 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US5745846A (en) 1995-08-07 1998-04-28 Lucent Technologies, Inc. Channelized apparatus for equalizing carrier powers of multicarrier signal
JP2755241B2 (en) 1995-08-25 1998-05-20 住友電気工業株式会社 Oscillation detection device for wireless repeater and wireless repeater to which this device is applied
US6108364A (en) 1995-08-31 2000-08-22 Qualcomm Incorporated Time division duplex repeater for use in a CDMA system
US6128512A (en) 1995-09-06 2000-10-03 Cisco Systems, Inc. Cellular communication system with dedicated repeater channels
WO1997015991A1 (en) 1995-10-26 1997-05-01 Ntt Mobile Communications Network Inc. Booster
US6005884A (en) 1995-11-06 1999-12-21 Ems Technologies, Inc. Distributed architecture for a wireless data communications system
JP3406443B2 (en) 1995-12-08 2003-05-12 日本ビクター株式会社 Wireless transmission equipment
US5771174A (en) 1995-12-21 1998-06-23 Measurex Corporation Distributed intelligence actuator controller with peer-to-peer actuator communication
US5884181A (en) 1996-01-19 1999-03-16 Bell Communications Research, Inc. Interference reduction in shared-frequency wireless communication systems
KR100188692B1 (en) 1996-01-20 1999-06-01 윤종용 Digital filter
US5767788A (en) 1996-03-19 1998-06-16 Ness; James C. Computer aided dispatch and locator cellular system
US5764636A (en) 1996-03-28 1998-06-09 Cisco Technology, Inc. Color blocking logic mechanism for a high-performance network switch
JPH09284509A (en) 1996-04-10 1997-10-31 Canon Inc Picture processor
US5883884A (en) 1996-04-22 1999-03-16 Roger F. Atkinson Wireless digital communication system having hierarchical wireless repeaters with autonomous hand-off
JP3039402B2 (en) 1996-12-05 2000-05-08 日本電気株式会社 Transmission power control device for mobile communication system
US6774685B2 (en) 1996-05-13 2004-08-10 Micron Technology, Inc. Radio frequency data communications device
US5930230A (en) 1996-05-28 1999-07-27 Qualcomm Incorporated High data rate CDMA wireless communication system
SE510569C2 (en) 1996-05-31 1999-06-07 Allgon Ab Variable bandwidth repeater
US5794145A (en) 1996-06-07 1998-08-11 Telxon Corporation Mobile device multiband antenna system
DE69729784T2 (en) 1996-06-27 2005-06-23 Ntt Docomo, Inc. ARRANGEMENT FOR TRANSMISSION CONTROL
US6215982B1 (en) 1996-06-28 2001-04-10 Cisco Systems, Inc. Wireless communication method and device with auxiliary receiver for selecting different channels
JPH1022756A (en) 1996-07-04 1998-01-23 Mitsubishi Electric Corp Radio transmitter and its transmission control method
JP2768354B2 (en) 1996-07-15 1998-06-25 日本電気株式会社 Relay system, transmission device and relay device used for the same
US5857144A (en) 1996-08-09 1999-01-05 Ericsson, Inc. In-band vehicular repeater for trunked radio system
FR2753589B1 (en) 1996-09-17 1998-10-09 Alcatel Espace RELAYS FOR RADIOCOMMUNICATION SYSTEM
US5875179A (en) 1996-10-29 1999-02-23 Proxim, Inc. Method and apparatus for synchronized communication over wireless backbone architecture
KR100224102B1 (en) 1996-11-28 1999-10-15 윤종용 Intermediate frequency selection apparatus and method for dual band cellular phone
CA2224035A1 (en) 1996-12-19 1998-06-19 J. Leland Langston Repeater node network system and method
US6222503B1 (en) 1997-01-10 2001-04-24 William Gietema System and method of integrating and concealing antennas, antenna subsystems and communications subsystems
FR2760167B1 (en) 1997-02-21 2000-08-04 Sagem RADIOTELEPHONY METHOD BETWEEN A BASE STATION AND A MOBILE TELEPHONE THROUGH A REPEATER
US6584144B2 (en) 1997-02-24 2003-06-24 At&T Wireless Services, Inc. Vertical adaptive antenna array for a discrete multitone spread spectrum communications system
JPH10247874A (en) 1997-03-04 1998-09-14 Kokusai Electric Co Ltd Time-division duplex system portable telephone repeater
US5963846A (en) 1997-03-31 1999-10-05 Motorola, Inc. Method and system for repeating pages
US6173162B1 (en) 1997-06-16 2001-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Multiple code channel power control in a radio communication system
JP3123467B2 (en) 1997-06-18 2001-01-09 日本電気株式会社 bridge
US6014380A (en) 1997-06-30 2000-01-11 Sun Microsystems, Inc. Mechanism for packet field replacement in a multi-layer distributed network element
JPH1141131A (en) 1997-07-15 1999-02-12 Toshiba Corp Radio communication device
US5959968A (en) 1997-07-30 1999-09-28 Cisco Systems, Inc. Port aggregation protocol
IL134287A0 (en) 1997-07-31 2001-04-30 Stanford Syncom Inc Means and method for a synchronous network communications system
US6484012B1 (en) 1997-08-04 2002-11-19 Wireless Facilities, Inc. Inter-band communication repeater system
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6404775B1 (en) 1997-11-21 2002-06-11 Allen Telecom Inc. Band-changing repeater with protocol or format conversion
US6377612B1 (en) 1998-07-30 2002-04-23 Qualcomm Incorporated Wireless repeater using polarization diversity in a wireless communications system
US6128729A (en) 1997-12-16 2000-10-03 Hewlett-Packard Company Method and system for automatic configuration of network links to attached devices
US6188694B1 (en) 1997-12-23 2001-02-13 Cisco Technology, Inc. Shared spanning tree protocol
US6032194A (en) 1997-12-24 2000-02-29 Cisco Technology, Inc. Method and apparatus for rapidly reconfiguring computer networks
US6202114B1 (en) 1997-12-31 2001-03-13 Cisco Technology, Inc. Spanning tree with fast link-failure convergence
JPH11266180A (en) 1998-03-18 1999-09-28 Fujitsu Ltd Array antenna system for radio base station
US6944139B1 (en) 1998-03-27 2005-09-13 Worldspace Management Corporation Digital broadcast system using satellite direct broadcast and terrestrial repeater
US6339694B1 (en) 1998-03-30 2002-01-15 Airnet Communications Corporation Method and apparatus employing automatic RF muting and wireless remote control of RF downlink transmission for a wireless repeater
US6400968B1 (en) 1998-05-04 2002-06-04 Conexant Systems, Inc. System and method for extending the range of a base unit
FI106674B (en) 1998-05-14 2001-03-15 Nokia Networks Oy A method for monitoring the operation of a cellular radio system
JP2000031877A (en) 1998-07-09 2000-01-28 Sharp Corp Mobile communication system
DE69943045D1 (en) 1998-07-28 2011-01-27 Samsung Electronics Co Ltd TRANSMITTED TRANSMISSION IN THE TAX STOP STATUS IN A CDMA COMMUNICATION SYSTEM
US6304575B1 (en) 1998-08-31 2001-10-16 Cisco Technology, Inc. Token ring spanning tree protocol
JP2000082983A (en) 1998-09-03 2000-03-21 Kokusai Electric Co Ltd Radio repeater amplifier device
KR100547713B1 (en) 1998-10-20 2006-03-23 삼성전자주식회사 Variable Channel Device for Wideband Code Division Multiple Access System
US6121932A (en) 1998-11-03 2000-09-19 Motorola, Inc. Microstrip antenna and method of forming same
EP1063536A1 (en) 1998-11-11 2000-12-27 Samsung Electronics Co., Ltd. Digital correlator for a receptor of signals from satellite radio-navigation systems
SE520836C3 (en) 1998-11-18 2003-10-01 Saab Ab Repeater interference transmitter and sleeve arrangement for the same
US6088570A (en) 1998-11-24 2000-07-11 Airnet Communications Corporation Method and apparatus employing delay elements in multiple diversity paths of a wireless system repeater translator to allow for selective diversity and automatic level control in a time-division multiple access system
US6628624B1 (en) 1998-12-09 2003-09-30 Cisco Technology, Inc. Value-added features for the spanning tree protocol
SG87784A1 (en) 1998-12-09 2002-04-16 Kent Ridge Digital Labs Csma/cd wireless lan
JP3484670B2 (en) 1999-02-15 2004-01-06 日本電気エンジニアリング株式会社 Satellite communication system
JP2002538640A (en) 1999-02-25 2002-11-12 バークレー コンセプト リサーチ コーポレイション Multi-channel distributed wireless repeater network
JP2000269873A (en) 1999-03-12 2000-09-29 Kokusai Electric Co Ltd Radio relay amplifier
JP2000286652A (en) 1999-03-31 2000-10-13 Harada Ind Co Ltd Controller
GB2349294B (en) 1999-04-19 2001-07-11 Marconi Comm Ltd Communications system
US6304563B1 (en) 1999-04-23 2001-10-16 Qualcomm Incorporated Method and apparatus for processing a punctured pilot channel
US6163276A (en) 1999-05-17 2000-12-19 Cellnet Data Systems, Inc. System for remote data collection
EP1063789B1 (en) 1999-06-23 2007-08-01 Sony Deutschland GmbH Transmit and receiving antenna diversity
GB2351420A (en) 1999-06-23 2000-12-27 Motorola Ltd Power control in a radio communication system
JP2001016152A (en) 1999-06-30 2001-01-19 Mitsubishi Electric Corp Wireless repeater
US6934511B1 (en) 1999-07-20 2005-08-23 Andrew Corporation Integrated repeater
JP2001111575A (en) 1999-08-03 2001-04-20 Matsushita Electric Ind Co Ltd Repeater device for converting radio lan cross channel and radio terminal device
EP1203458A4 (en) 1999-08-10 2002-11-05 Airnet Communications Corp Translating repeater system with improved backhaul efficiency
JP2001136115A (en) 1999-11-01 2001-05-18 Mitsubishi Electric Corp Method for eliminating sneak-path wave for antenna system for relay station
US6285863B1 (en) 1999-11-24 2001-09-04 Lucent Technologies Inc. System and method for providing automatic gain control with high dynamic range
US6718160B2 (en) 1999-12-29 2004-04-06 Airnet Communications Corp. Automatic configuration of backhaul and groundlink frequencies in a wireless repeater
US6957042B2 (en) 2000-01-10 2005-10-18 Airnet Communications Corporation Packet based backhaul channel configuration for a wireless repeater
US6664932B2 (en) 2000-01-12 2003-12-16 Emag Technologies, Inc. Multifunction antenna for wireless and telematic applications
AU2001234463A1 (en) 2000-01-14 2001-07-24 Andrew Corporation Repeaters for wireless communication systems
ES2160087B1 (en) 2000-02-18 2003-03-01 Mier Comunicaciones S A PROCEDURE FOR REPETITION OF SIGNALS IN INSOFREQUENCY AND REPEATER OF SIGNS IN ISOFREQUENCY.
JP2001244864A (en) 2000-02-29 2001-09-07 Hitachi Ltd Radio repeating system
US7703107B2 (en) 2000-04-06 2010-04-20 Infineon Technologies Ag Virtual machine interface for hardware reconfigurable and software programmable processors
KR100328853B1 (en) 2000-04-27 2002-03-20 이상철 System and method for supervising repeater by using wireless mobile
KR100403738B1 (en) 2000-05-24 2003-10-30 삼성전자주식회사 Data transmission apparatus and method for an harq data communication system
DE60035968T2 (en) 2000-06-05 2008-05-15 Sony Deutschland Gmbh Wireless interior system with active reflector
US7103344B2 (en) 2000-06-08 2006-09-05 Menard Raymond J Device with passive receiver
US20010054060A1 (en) 2000-06-16 2001-12-20 Fillebrown Lisa A. Personal wireless network
US6766113B1 (en) 2000-06-16 2004-07-20 Lucent Technologies Inc. Control channel processor and switching mechanism
US6501955B1 (en) 2000-06-19 2002-12-31 Intel Corporation RF signal repeater, mobile unit position determination system using the RF signal repeater, and method of communication therefor
EP1204223B1 (en) 2000-06-20 2007-02-28 Mitsubishi Denki Kabushiki Kaisha Repeater
US6331792B1 (en) 2000-06-30 2001-12-18 Conexant Systems, Inc. Circuit and method for unlimited range frequency acquisition
US6473131B1 (en) 2000-06-30 2002-10-29 Stmicroelectronics, Inc. System and method for sampling an analog signal level
US6574198B1 (en) 2000-07-06 2003-06-03 Ericsson Inc. Systems and methods for maintaining a signaling link in a communications network
US6452910B1 (en) 2000-07-20 2002-09-17 Cadence Design Systems, Inc. Bridging apparatus for interconnecting a wireless PAN and a wireless LAN
US7366103B2 (en) 2000-08-18 2008-04-29 Nortel Networks Limited Seamless roaming options in an IEEE 802.11 compliant network
US6778612B1 (en) 2000-08-18 2004-08-17 Lucent Technologies Inc. Space-time processing for wireless systems with multiple transmit and receive antennas
AU2001288828A1 (en) 2000-09-14 2002-03-26 Ensemble Communications, Inc. A system and method for wireless communication in a frequency division duplexingregion
US7710503B2 (en) 2000-09-25 2010-05-04 Thomson Licensing Apparatus and method for optimizing the level of RF signals based upon the information stored on a memory
US6563468B2 (en) 2001-04-27 2003-05-13 Tyco Electronics Logistics Ag Omni directional antenna with multiple polarizations
JP3596452B2 (en) 2000-09-28 2004-12-02 日本電信電話株式会社 Wireless repeater
US6539204B1 (en) 2000-09-29 2003-03-25 Mobilian Corporation Analog active cancellation of a wireless coupled transmit signal
EP1348271A4 (en) 2000-10-06 2006-05-10 Cognio Inc Systems and methods for interference mitigation among multiple wlan protocols
CA2323881A1 (en) 2000-10-18 2002-04-18 Dps Wireless Inc. Adaptive personal repeater
KR100401186B1 (en) 2000-10-20 2003-10-10 삼성전자주식회사 Apparatus and method for determining a data rate of packet data in mobile communication system
US6807165B2 (en) 2000-11-08 2004-10-19 Meshnetworks, Inc. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
KR100464485B1 (en) 2000-11-09 2004-12-31 엘지전자 주식회사 A method and a device of transmitting high-speed packet data
US6985516B1 (en) 2000-11-27 2006-01-10 Qualcomm Incorporated Method and apparatus for processing a received signal in a communications system
AU2002235258A1 (en) 2000-12-27 2002-07-08 Ensemble Communications, Inc. Adaptive call admission control for use in a wireless communication system
TWM249366U (en) 2001-01-02 2004-11-01 Z Com Inc Radio signal detection device of wireless local area network
WO2002058414A1 (en) 2001-01-20 2002-07-25 Samsung Electronics Co., Ltd System and method for remotely controlling a mobile terminal
US7027418B2 (en) 2001-01-25 2006-04-11 Bandspeed, Inc. Approach for selecting communications channels based on performance
US20020109585A1 (en) 2001-02-15 2002-08-15 Sanderson Lelon Wayne Apparatus, method and system for range extension of a data communication signal on a high voltage cable
US7113745B2 (en) * 2001-02-21 2006-09-26 Ericsson Inc. Method to achieve diversity in a communication network
JP2002271255A (en) 2001-03-12 2002-09-20 Toshiba Digital Media Engineering Corp Repeater equipment and interexchange method
US7088734B2 (en) 2001-03-27 2006-08-08 Motorola, Inc. Slot format and method for increasing random access opportunities in a wireless communication system
JP3943859B2 (en) 2001-05-01 2007-07-11 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system, mobile communication method, and mobile station
US7027770B2 (en) 2001-05-22 2006-04-11 Andrew Corporation Repeater for customer premises
US7167526B2 (en) 2001-06-07 2007-01-23 National Univ. Of Singapore Wireless communication apparatus and method
EP1400062A2 (en) * 2001-06-28 2004-03-24 King's College London Electronic data communication system
US6934555B2 (en) 2001-06-29 2005-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Software analysis tool for CDMA system
US20030026363A1 (en) 2001-07-31 2003-02-06 Jan Stoter Adaptive automatic gain control
AU2002313423A1 (en) 2001-08-02 2003-02-17 Spotwave Wireless Inc. Adaptive on-frequency repeater
ATE346442T1 (en) * 2001-09-14 2006-12-15 Motorola Inc METHOD FOR IMPROVING COMMUNICATION CAPABILITY IN A WIRELESS TELECOMMUNICATIONS SYSTEM
US7123670B2 (en) 2001-09-24 2006-10-17 Atheros Communications, Inc. Fine frequency offset estimation and calculation and use to improve communication system performance
WO2003037027A1 (en) 2001-10-18 2003-05-01 Fujitsu Limited Mobile communication system and communication method thereof
US7924751B2 (en) 2001-11-20 2011-04-12 Qualcomm Incorporated Reverse link power controlled repeater
JP2003174394A (en) 2001-12-06 2003-06-20 Hitachi Kokusai Electric Inc Communication unit
US7406647B2 (en) 2001-12-06 2008-07-29 Pulse-Link, Inc. Systems and methods for forward error correction in a wireless communication network
JP4052835B2 (en) 2001-12-28 2008-02-27 株式会社日立製作所 Wireless transmission system for multipoint relay and wireless device used therefor
JP2003244050A (en) 2002-02-14 2003-08-29 Hitachi Cable Ltd Method for controlling transmission power for repeater
US6904266B1 (en) 2002-02-19 2005-06-07 Navini Networks, Inc. Wireless enhancer using a switch matrix
US7315573B2 (en) 2002-02-28 2008-01-01 Texas Instruments Incorporated Channel monitoring for improved parameter selection in a communication system
US7050758B2 (en) 2002-02-28 2006-05-23 Nortel Networks Limited Self-configuring repeater system and method
US6781544B2 (en) 2002-03-04 2004-08-24 Cisco Technology, Inc. Diversity antenna for UNII access point
US7058071B1 (en) 2002-03-04 2006-06-06 Cisco Systems Wireless Networking (Australia) Pty Limited Method and apparatus using pipelined execution data sets for processing transmission frame sequences conforming to a wireless network MAC protocol
US6990313B1 (en) 2002-03-14 2006-01-24 Sprint Communications Company L.P. Wireless repeater with intelligent signal display
JP3799282B2 (en) 2002-03-22 2006-07-19 Necインフロンティア株式会社 Wireless LAN base station capable of automatic wireless channel alignment
US20030185163A1 (en) 2002-03-27 2003-10-02 Bertonis James G. System and method for wireless cable data transmission
EP1359684A1 (en) 2002-04-30 2003-11-05 Motorola Energy Systems Inc. Wireless transmission using an adaptive transmit antenna array
KR100827140B1 (en) 2002-05-03 2008-05-02 삼성전자주식회사 Apparatus for generating reception/transmission reference timing in mobile communication terminal and method thereof
JP2003332963A (en) 2002-05-17 2003-11-21 Toshiba Corp Radio communication system and apparatus thereof
US7113498B2 (en) 2002-06-05 2006-09-26 Broadcom Corporation Virtual switch
US7120930B2 (en) 2002-06-13 2006-10-10 Nvidia Corporation Method and apparatus for control of security protocol negotiation
US20040047335A1 (en) 2002-06-21 2004-03-11 Proctor James Arthur Wireless local area network extension using existing wiring and wireless repeater module(s)
US20040157551A1 (en) 2002-06-21 2004-08-12 Tantivy Communications, Inc Repeater for extending range of time division duplex communication system
WO2004001986A2 (en) 2002-06-21 2003-12-31 Ipr Licensing, Inc. Repeater for extending range of time division duplex communication system
US20030235170A1 (en) 2002-06-21 2003-12-25 Trainin Solomon B. Method, apparatus, and system for distributed access points for wireless local area network (LAN)
EP1525678B1 (en) 2002-06-21 2008-07-30 QUALCOMM Incorporated Wireless local area network repeater
US7058368B2 (en) 2002-06-27 2006-06-06 Nortel Networks Limited Adaptive feedforward noise cancellation circuit
US7355993B2 (en) 2002-06-27 2008-04-08 Adkins Keith L Method and apparatus for forward link gain control in a power controlled repeater
JP2004056210A (en) 2002-07-16 2004-02-19 Matsushita Electric Ind Co Ltd Mobile communication system, base station apparatus, and mobile station apparatus
KR100702746B1 (en) 2002-08-20 2007-04-03 엘지전자 주식회사 Method and apparatus for managing power of wireless local area network module in computer system
US7590145B2 (en) 2002-09-17 2009-09-15 Scientific-Atlanta, Inc. Multiplexing octets from a data flow over MPEG packets
US6788256B2 (en) 2002-09-19 2004-09-07 Cingular Wireless, Llc Concealed antenna assembly
US7200134B2 (en) 2002-10-01 2007-04-03 Widefi, Inc. Wireless area network using frequency translation and retransmission based on modified protocol messages for enhancing network coverage
US8885688B2 (en) 2002-10-01 2014-11-11 Qualcomm Incorporated Control message management in physical layer repeater
US20060063484A1 (en) 2002-10-24 2006-03-23 Proctor James A Jr Wireless local area network repeater with in-band control channel
US8122134B2 (en) 2002-10-11 2012-02-21 Qualcomm Incorporated Reducing loop effects in a wireless local area network repeater
CN100574147C (en) 2002-10-15 2009-12-23 高通股份有限公司 The WLAN (wireless local area network) transponder that is used for expanding coverage area of network with automatic gain control
US7230935B2 (en) 2002-10-24 2007-06-12 Widefi, Inc. Physical layer repeater with selective use of higher layer functions based on network operating conditions
CA2504347A1 (en) 2002-11-15 2004-06-03 Widefi, Inc. Wireless local area network repeater with detection
US7391383B2 (en) 2002-12-16 2008-06-24 Next-Rf, Inc. Chiral polarization ultrawideband slot antenna
JP2006510326A (en) 2002-12-16 2006-03-23 ワイデファイ インコーポレイテッド Improved wireless network repeater
US20040146013A1 (en) 2003-01-22 2004-07-29 Hong Kong Applied Science And Technology Research Institute Co., Ltd Wireless local area network time division duplex relay system with high speed automatic up-link and down-link detection
US7440785B2 (en) 2003-03-07 2008-10-21 Nortel Networks Limited Method and apparatus for enhancing link range in a wireless network using self-configurable antenna
AU2004214824A1 (en) 2003-02-24 2004-09-10 Qualcomm Incorporated Repeater oscillation prevention
WO2004079922A2 (en) 2003-02-26 2004-09-16 Ems Technologies, Inc. Cellular signal enhancer
JP4529375B2 (en) 2003-04-28 2010-08-25 パナソニック電工株式会社 Wireless relay device
US20040218683A1 (en) * 2003-05-01 2004-11-04 Texas Instruments Incorporated Multi-mode wireless devices having reduced-mode receivers
JP4564012B2 (en) * 2003-05-28 2010-10-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and system for a wireless communication network utilizing relay
US7215964B2 (en) 2003-06-06 2007-05-08 Nokia Corporation Asymmetric radio access network, and associated method, for communicating data at high data rates
US7352696B2 (en) 2003-08-08 2008-04-01 Intel Corporation Method and apparatus to select an adaptation technique in a wireless network
JP2005072646A (en) 2003-08-22 2005-03-17 Toshiba Corp Reception re-transmission shared antenna for gap filler
US7676194B2 (en) * 2003-08-22 2010-03-09 Rappaport Theodore S Broadband repeater with security for ultrawideband technologies
KR100585726B1 (en) 2003-09-03 2006-06-07 엘지전자 주식회사 Method and apparatus for beam forming of array antenna in mobile terminal
US7194275B2 (en) 2003-10-02 2007-03-20 Telefonaktiebolaget Lm Ericsson (Publ) Position determination of mobile stations
JP4354245B2 (en) 2003-10-02 2009-10-28 日本電信電話株式会社 Wireless relay device
DE602004030032D1 (en) 2003-11-17 2010-12-23 Quellan Inc METHOD AND SYSTEM FOR ERASING ANTENNA INTERFERENCE
US7430397B2 (en) * 2003-12-05 2008-09-30 Ntt Docomo, Inc. Radio repeater and radio relay transmission method
KR20040004261A (en) 2003-12-08 2004-01-13 주식회사 컨버시스 Repeating method and apparatus for TDD(Time Division Duplex) wireless communication
US7299005B1 (en) 2004-01-07 2007-11-20 Sprint Spectrum L.P. Radio frequency repeater with automated block/channel selection
JP4398752B2 (en) 2004-02-19 2010-01-13 株式会社エヌ・ティ・ティ・ドコモ Wireless relay system, wireless relay device, and wireless relay method
JP4960223B2 (en) 2004-05-13 2012-06-27 クゥアルコム・インコーポレイテッド Non-frequency conversion repeater for detection and media access control
KR100610929B1 (en) 2004-05-18 2006-08-10 삼성탈레스 주식회사 Method for acquiring syncronization in relay of time division duplexing procedure and apparatus
US7132988B2 (en) 2004-05-19 2006-11-07 Delphi Technologies, Inc. Directional patch antenna
US7187904B2 (en) 2004-06-03 2007-03-06 Widefi, Inc. Frequency translating repeater with low cost high performance local oscillator architecture
US7623826B2 (en) 2004-07-22 2009-11-24 Frank Pergal Wireless repeater with arbitrary programmable selectivity
US7773535B2 (en) 2004-08-12 2010-08-10 Motorola, Inc. Method and apparatus for closed loop transmission
US7844216B2 (en) 2004-09-07 2010-11-30 Samsung Electronics Co., Ltd. Wireless repeater using a single RF chain for use in a TDD wireless network
US7966012B2 (en) 2004-09-09 2011-06-21 Parkervision, Inc. Wireless protocol converter
US20060203757A1 (en) 2005-03-11 2006-09-14 Spotwave Wireless Inc. Adaptive repeater system
US7733285B2 (en) 2005-05-18 2010-06-08 Qualcomm Incorporated Integrated, closely spaced, high isolation, printed dipoles
US7406060B2 (en) 2005-07-06 2008-07-29 Nortel Networks Limited Coverage improvement in wireless systems with fixed infrastructure based relays
US8130629B2 (en) 2005-11-25 2012-03-06 Go Net Systems Ltd Simultaneous simulcast and single cast hybrid multi-tone communication system
US7409186B2 (en) 2006-07-13 2008-08-05 Wilson Electronics, Inc. Detection and elimination of oscillation within cellular network amplifiers
US7486929B2 (en) 2006-07-13 2009-02-03 Wilson Electronics, Inc. Processor-controlled variable gain cellular network amplifiers with oscillation detection circuit
US20080057862A1 (en) 2006-08-31 2008-03-06 Smith James P Ultra wide band stand-alone repeater/selector and systems
US7729669B2 (en) 2006-09-26 2010-06-01 Wilson Electronics Processor controlled variable gain cellular network amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061548A (en) * 1997-07-17 2000-05-09 Metawave Communications Corporation TDMA repeater eliminating feedback
US6690657B1 (en) * 2000-02-25 2004-02-10 Berkeley Concept Research Corporation Multichannel distributed wireless repeater network
US20040229563A1 (en) * 2003-02-14 2004-11-18 Kabushiki Kaisha Toshiba Communication network for indoor environment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885688B2 (en) 2002-10-01 2014-11-11 Qualcomm Incorporated Control message management in physical layer repeater
EP2070207A2 (en) * 2006-09-01 2009-06-17 Qualcomm Incorporated Repeater having dual receiver or transmitter antenna configuration with adaptation for increased isolation
EP2070207A4 (en) * 2006-09-01 2012-11-28 Qualcomm Inc Repeater having dual receiver or transmitter antenna configuration with adaptation for increased isolation

Also Published As

Publication number Publication date
US20060193271A1 (en) 2006-08-31
US8059727B2 (en) 2011-11-15
WO2006081405A3 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
US8059727B2 (en) Physical layer repeater configuration for increasing MIMO performance
EP1525678B1 (en) Wireless local area network repeater
EP1604468B1 (en) Wireless local area network repeater with automatic gain control for extending network coverage
US20040157551A1 (en) Repeater for extending range of time division duplex communication system
US20060063484A1 (en) Wireless local area network repeater with in-band control channel
US8089913B2 (en) Physical layer repeater with selective use of higher layer functions based on network operating conditions
KR100788661B1 (en) A method and system for of creating active multipaths for MIMO wireless systems
KR101012629B1 (en) Reducing loop effects in a wireless local area network repeater
US20040146013A1 (en) Wireless local area network time division duplex relay system with high speed automatic up-link and down-link detection
US20060056352A1 (en) Wireless local area network repeater with detection
EP1977535B1 (en) Physical layer repeater selecting higher layer functions
US5515365A (en) Method and apparatus for reducing interference in a time division duplex communication system
WO2004001986A2 (en) Repeater for extending range of time division duplex communication system
EP1924008A1 (en) Wireless local area network repeater
JP3507676B2 (en) Terminal station device and wireless communication control system using the same
JPH066275A (en) Diversity radio equipment
JPH08279798A (en) Mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06733961

Country of ref document: EP

Kind code of ref document: A2