WO2008010283A1 - Signal detecting apparatus - Google Patents

Signal detecting apparatus Download PDF

Info

Publication number
WO2008010283A1
WO2008010283A1 PCT/JP2006/314415 JP2006314415W WO2008010283A1 WO 2008010283 A1 WO2008010283 A1 WO 2008010283A1 JP 2006314415 W JP2006314415 W JP 2006314415W WO 2008010283 A1 WO2008010283 A1 WO 2008010283A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
addition
unit
result
Prior art date
Application number
PCT/JP2006/314415
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Kobayashi
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2008525762A priority Critical patent/JP4685937B2/en
Priority to PCT/JP2006/314415 priority patent/WO2008010283A1/en
Publication of WO2008010283A1 publication Critical patent/WO2008010283A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the present invention relates to a signal detection device that performs detection of a desired signal and the like in a receiver that constitutes a communication device, and in particular, detects a desired signal and a symbol timing using a known signal. It is related with the signal detection apparatus to perform.
  • a known signal waveform is added before a signal for transmitting data, and the known signal waveform is transmitted to a communication device belonging to the communication system. It constantly monitors whether or not it exists on the transmission line. And when a communication device detects the presence of a known signal waveform, it does not transmit even if there is transmission data, and performs a receiving operation. Also, in the case of a communication system using the TDMA (Time Division Multiple Access) method, the base station periodically transmits a known signal waveform so that the terminal can synchronize with the basic period and timing of time division. In some cases, the terminal performs synchronization by detecting this known signal waveform. Such a known signal waveform is called a preamble, and the operation of detecting whether or not the signal of the communication system of the device is present on the transmission path is called carrier detection or carrier sense. is there.
  • CSMA Carrier Sense Multiple Access
  • a communication device In conventional carrier detection, a communication device simply receives received signal power (RSSI).
  • RSSI received signal power
  • the RSSI measurement result is compared with a certain threshold value, and if the RSSI measurement value is larger than the threshold value, it is determined that a signal is present, and the RSSI measurement value is smaller than the threshold value V, In case it was judged that there was no signal, it was.
  • the correlation value between the signal waveform on the transmission line and the preamble signal waveform which is a known waveform is constantly monitored, and when the correlation value is greater than a certain threshold, it is determined that a signal exists, A method for more reliably detecting the presence of a signal in the target communication system by determining that the signal does not exist when the correlation value is smaller than the threshold value. (For example, Patent Document 1).
  • the reception side obtains the correlation value of the received waveform in the same manner as the carrier detection described above, and the symbol timing is determined based on the timing of the peak position where the correlation value is maximum. Detection methods are used (for example, Non-Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-295085 (Page 3-6, Fig. 1)
  • Non-Patent Document 1 Supervised by Masahiro Moriya and Shuji Kubota “Revised 802.11 High-Speed Wireless LAN Textbook” Impress Inc., January 1, 2005, P206-212
  • the detection determination based on the conventional RSSI is based only on the power, even if the power of other system signals or noises exceeds the threshold, the carrier is detected. O There is a problem that it is judged to be a detection, that is, there is a high possibility of performing a false detection.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a signal detection device that realizes highly accurate carrier detection and timing detection.
  • a signal detection apparatus for detecting a desired signal modulated by a medium power OFDM system of a received signal.
  • the signal conversion means for converting the received signal into frequency domain information (first frequency domain signal) for each carrier, and signals of a plurality of carriers that include predetermined known information and have different frequencies and initial phases are multiplexed.
  • known frequency information generating means for generating frequency domain information (second frequency domain information) for each carrier, and complex of the second frequency domain information output from the known frequency information generating means
  • the complex conjugate generating means for generating a conjugate for each carrier, the first frequency domain signal for each carrier, and the complex conjugate for each carrier generated by the complex conjugate generating means have the same frequency.
  • a multiplication means for multiplying the areas, an addition means for adding a part or all of the multiplication outputs of the multiplication means, an absolute value of the addition result or a square value of the addition result,
  • Signal detecting means for performing detection determination of a desired signal using a prescribed predetermined threshold value.
  • the received preamble signal is converted into frequency domain information by FFT, and the result obtained by multiplying the converted information by the complex conjugate value of a known preamble pattern is used.
  • carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern, compared with the case where carrier detection is performed only with the power that was conventionally used. As a result, the frequency of erroneous detection can be suppressed, and the carrier detection accuracy can be increased.
  • FIG. 1 is a diagram illustrating a configuration example of a communication device (transmitter) on a side that transmits data to a communication device including a signal detection device according to the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of a first embodiment of a communication device (receiver) including a signal detection device according to the present invention.
  • FIG. 3 is a diagram illustrating a configuration example of a carrier detection timing determination unit according to Embodiment 1.
  • FIG. 4 is a diagram illustrating a configuration example of a carrier detection timing determination unit according to Embodiment 2.
  • Figure 5 shows an example of the relationship between the leading position of the preamble signal and ⁇ relative to the FFT input range.
  • FIG. 1 A first figure.
  • FIG. 6 is a diagram illustrating a configuration example of a receiver according to the fourth embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a receiver according to the fifth embodiment.
  • FIG. 8 is a diagram illustrating a configuration example of a carrier detection timing determination unit according to the sixth embodiment.
  • FIG. 9 is a diagram illustrating another configuration example of the carrier detection timing determination unit according to the sixth embodiment.
  • FIG. 1 is a diagram showing a configuration example of a communication apparatus (transmitter) that transmits data by OFDM modulation to a communication apparatus including a signal detection apparatus according to the present invention, and 1 indicates a transmitter.
  • This transmitter 1 has transmission information 10 that also has bit string power as input, a modulation section 11 that outputs the modulation result, an IFFT section 12 that converts the output of the modulation section 11 into frequency domain power, and I FFT
  • the digital Z / analog converter (D / A) 13 that converts the output of the unit 12 into an analog format and the known signal (hereinafter called the preamble) for carrier detection and timing determination
  • a preamble generation unit 40 for generating a preamble pattern to be 14 is an analog converted transmission signal, and 2 is a transmission path.
  • FIG. 2 is a diagram showing a configuration example of the first embodiment of the communication device (receiver) including the signal detection device according to the present invention, and 3 shows the receiver.
  • the receiver 3 includes an analog Z / digital converter (A / D) 33 that converts the received signal 34 from the transmission side into a digital format, and A An FFT unit 32 that converts the output of the ZD conversion unit 33 from the time domain to the frequency domain, a demodulator 31 that demodulates the output of the FFT unit 32 and generates reception information 30 that also has bit string power, and an FFT unit 32 And a carrier detection timing determination unit 50 that performs carrier detection and timing detection based on the output of. 2 is the same transmission path as shown in FIG. 1, and the transmitter 1 and the receiver 3 forming the communication system exchange signals via this transmission path 2.
  • a / D analog Z / digital converter
  • the transmitter 1 generates a transmission signal based on the transmission information 10
  • the receiver 3 receives the generated signal, and demodulates it to generate the reception signal 30 (restore the transmission information 10). ) The operation will be described.
  • the preamble generation unit 40 When transmitting a preamble signal, the preamble generation unit 40 generates a known preamble pattern that is determined in advance. This preamble pattern is a pseudo-random pattern consisting of a bit string of “0” and “1”, for example, called an M-sequence.
  • the generated preamble pattern is input to the modulation unit 11.
  • the modulation unit 11 is in accordance with a modulation scheme such as BPSK (Binary Phase Shift Keying), QPSK (Quadrate Phase Shift Keying), or QAM (Quadrate Amplitude Modulation).
  • the input preamble pattern (bit string) is divided for each subcarrier and further mapped onto the complex plane. For example, if the preamble pattern is to be BPSK modulated, the bit string that is also input to the preamble generator 40 is divided into lbits. If it is “0”, it is “—l + 0j”, if it is “1”, it is “1”. + Oj "to convert to complex data representing two points on the complex plane.
  • the complex data generated by the modulation unit 11 is input to the I FFT unit 12 as frequency domain information for each subcarrier.
  • the IFFT unit 12 converts the input information into time domain information, and outputs digital time waveform information equal to a combined wave obtained by combining waveforms for each subcarrier. Further, the digital time waveform information is converted into an analog signal by a digital Z analog conversion unit (hereinafter referred to as a DZA conversion unit) 13 and sent to the transmission path 2 as a transmission signal 14.
  • a digital Z analog conversion unit hereinafter referred to as a DZA conversion unit
  • the preamble pattern may be assigned to all subcarriers or only some of the subcarriers may be used.
  • the input to the modulation unit 11 becomes an arbitrary transmission information bit string (transmission information 10) instead of the known pattern input from the preamble generation unit 40.
  • the basic operations of the modulation unit 11, the IFFT unit 12, and the DZA conversion unit 13 are the same as the operations at the time of preamble signal transmission described above.
  • the transmission information modulation scheme need not be the same as the preamble modulation scheme, and other modulation schemes may be used.
  • the implementation method of the preamble generation unit 40 includes a method of generating a preamble pattern using a shift register and an XOR operation circuit if it is a pseudo-random sequence such as an M sequence, or a preamble as a memory. There is a method of storing patterns.
  • the preamble generation unit 40 has a memory configuration, digital time waveform information of the preamble signal may be stored. In this case, the output of the preamble generation unit 40 is directly input to the DZA conversion unit 13.
  • an analog Z digital conversion unit (hereinafter referred to as AZD conversion unit) 33 converts it into digital time waveform information.
  • the FFT unit 32 corresponding to the signal conversion means generates complex data as frequency domain information for each subcarrier by converting the input from the AZD conversion unit 33 into the frequency domain.
  • the demodulator 31 demaps the input from the AZD converter 33 to a bit string for each subcarrier according to a predetermined demodulation method such as BPSK, QPSK, QAM, etc.
  • Receive information 30 is generated.
  • the preamble signal reception process is the same as the data reception process until the FFT unit 32 converts the input of the AZD conversion unit 33 into a time domain power frequency domain.
  • the complex data for each subcarrier generated by the FFT unit 32 is input to the carrier detection timing determination unit 50, and the carrier detection timing determination unit 50 performs carrier detection and timing determination.
  • FIG. 3 is a diagram illustrating a configuration example of the carrier detection timing determination unit 50 included in the receiver according to the present embodiment.
  • the carrier detection timing detection unit 50 is the same as that transmitted from the transmitter 1.
  • a preamble pattern generator 51 that generates frequency information for each subcarrier of a known signal (preamble signal), a complex conjugate 52 that converts complex numbers to complex conjugate values, a complex multiplier 53, and a sum of multiple complex numbers
  • the complex summation unit 54 for calculating the absolute value, the absolute value calculation unit 55 for calculating the absolute value of the complex number, and the absolute value of the calculated complex number are compared with a predetermined threshold value.
  • a carrier detection determination unit 56 that determines that a carrier has been detected in the above case.
  • the complex number information for each subcarrier input from the FFT unit 32 to the carrier detection timing detection unit 50 is X (i is a subcarrier number).
  • a preamble pattern generation unit 51 corresponding to known frequency information generation means generates complex number information P (i is a subcarrier number) for each subcarrier in the preamble signal, and generates complex conjugate thereof.
  • a complex conjugate 52 corresponding to the means converts to a complex conjugate value P *.
  • the complex multiplier 53 corresponding to the multiplication means multiplies the P * by the complex number information X of the received signal to obtain Y.
  • the sum total value Z of Y is calculated by the complex summation device 54 corresponding to the adding means. Z thus obtained can be expressed by the following equation (1).
  • the absolute value calculation unit 55 calculates the absolute value of the total value Z output from the complex totalizer 54.
  • the absolute value of the square value of the total value Z (corresponding to power) as shown in the following equation (3) is calculated.
  • the carrier detection / determination unit 56 may perform carrier detection using the square value of the total value Z, for example, by the calculation by the unit 55.
  • Z 2 A 2 + B 2 --(3)
  • the total value for all the subcarriers (the sum of all the multiplication results Y ; ) is used as V, and instead of only some of the subcarriers (the multiplication result Y ; (Addition value for a part selected from the above) may be calculated, and the subsequent processing may be performed using the addition result.
  • the absolute value calculation unit 55 and the carrier detection unit 56 constitute a signal detection unit.
  • the carrier detection determination unit 56 can determine carrier detection when the absolute value exceeds a predetermined threshold for signal detection determination in consideration of transmission path characteristics and the like. The timing when the preamble signal is present can be detected.
  • the preamble pattern is BPSK modulated has been described as an example, but the same applies when other modulation schemes are used.
  • the threshold for signal detection determination is determined based on the relationship between the absolute value of the total value when a preamble signal is received and the absolute value of the total value when a signal other than the preamble signal is received! / To do.
  • the bit pattern used as the preamble pattern, the comparison target at the time of carrier detection judgment (LV, whether to use the absolute value of the total value or the square value of the absolute value as the value to be compared) Type of information to be added when calculating the total value (what kind of processing is performed on the input X to the carrier detection timing judgment unit) To be calculated) and the number of objects to be added when calculating the total value (number of information to be added). It is also possible to select and use the optimum threshold value as appropriate according to the transmission path characteristics from a plurality of threshold values determined in advance in consideration of the transmission path characteristics. Decide it in advance and use it while adjusting the appropriate value according to the transmission path characteristics.
  • the transmission side transmits, as preamble signals, signals that have been assigned a predetermined preamble pattern to a plurality of predetermined frequencies.
  • the preamble signal when the preamble signal is received, information is separated for each frequency using the FFT, and the result obtained by multiplying them with the complex conjugate value of the preamble pattern is used.
  • carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern. As a result, the possibility of erroneous detection can be reduced compared to the case where carrier detection or the like is performed using only power that has been conventionally used.
  • the FFT unit 32 and the complex multiplier 53 are circuits normally provided for data reception by a general OFDM receiver, and it is not necessary to perform carrier detection and data demodulation at the same time.
  • the same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
  • the carrier detection determination is performed by using the sum of the FFT result of the received signal and the complex multiplication result of the conjugate complex value of the preamble pattern.
  • the preamble signal reception timing is determined in finer units than the time interval input to the FFT using the result of the complex multiplication of the conjugate complex value of the preamble pattern and the result of conjugate complex multiplication between the two subcarriers. The case where it does is demonstrated.
  • the transmitter of the present embodiment has a configuration similar to that of the transmitter of the first embodiment described above (see FIG. 1).
  • the receiver has the same configuration as that of the receiver of Embodiment 1 (see FIG. 2), but the detailed configuration of the carrier detection timing determination unit is partially different. Therefore, this embodiment In the above, description of parts other than the carrier detection timing determination unit will be omitted, and only the operation of the timing detection determination unit (in this embodiment, the timing detection determination unit 50a) will be described.
  • FIG. 4 is a diagram illustrating a configuration example of the carrier detection timing determination unit 50a according to the second embodiment.
  • This carrier detection timing determination unit 50a further adds a (second) complex conjugate 52 and a (second) complex multiplication after the complex multiplier 53 to the carrier detection timing determination unit 50 of the first embodiment.
  • a phase calculation unit 57 and a timing determination unit 58 are added.
  • Other portions are denoted by the same reference numerals as those of the carrier detection timing determination unit 50, and the description thereof is omitted.
  • the subsequent complex conjugate unit 52 converts a complex conjugate value (Y, Y, ..., Y) other than Y (ie, Y, Y, ..., Y) from the output of the preceding complex multiplier 53.
  • the downstream complex multiplier 53 is connected to the complex conjugate 52
  • the complex summation unit 54 is the summation value Z k of the output of the complex multiplier 53 in the subsequent stage.
  • the vector has a phase rotation amount according to the interval frequency. If the subcarrier interval frequency is constant, it becomes a vector (complex number information) having the same phase between all subcarriers.
  • the output of the complex summation device 54 is input to the absolute value calculation unit 55 and the phase calculation unit 57.
  • the processing in absolute value calculation unit 55 and carrier detection determination unit 56 is the same as that in the first embodiment described above.
  • the threshold for signal detection determination used by carrier detection determination unit 56 is different from that used in the first embodiment. That is, the carrier detection determination unit 56, for example, the type of information to be added when the complex summation unit 54 calculates the summation value (the complex multiplier 52 and the complex multiplier 53 are input to the input X to the carrier detection timing determination unit).
  • the information obtained by modifying the threshold value used in the first embodiment is used in consideration of what kind of processing is executed and adding the information obtained by the processing.
  • the timing at which the input value (the output of the absolute value calculation unit 55) exceeds the threshold in the carrier detection determination 56 is used as the preamble signal detection timing.
  • the time waveform input to the FFT unit 32 has a time interval width corresponding to the input range of the FFT unit 32, and timing information beyond this time interval cannot be obtained (detection accuracy cannot be increased). . Therefore, in the present embodiment, in order to obtain more detailed timing, first, the phase calculator 57 obtains the phase of the total value Z using the following equation (5).
  • Figure 5 shows the relationship between the preamble signal start position and 0 for the FFT input range.
  • the timing determiner 58 uses the following equation (6) to calculate the deviation ⁇ between the current received signal input range to the FFT unit 32 and the start position of the preamble, and uses ⁇ to determine the reception timing.
  • T is a time corresponding to the input range of the FFT unit 32.
  • the phase The calculation unit 57 and the timing determination unit 58 constitute the timing determination means c [Equation 5]
  • Data can be demodulated at the timing.
  • Y ' may be obtained between adjacent subcarriers, and the sum value may be used.
  • Y' may be obtained between arbitrary subcarriers. Only some of the subcarriers may be used. However, when Y ′ is obtained between arbitrary subcarriers, the phase of Y ′ is set to a value corresponding to the phase rotation at the frequency interval between one subcarrier according to the frequency interval between the subcarriers. Correction such as calculating the total value ⁇ is required.
  • the transmission side transmits, as preamble signals, signals that have been assigned a predetermined preamble pattern to a plurality of predetermined frequencies.
  • preamble signals signals that have been assigned a predetermined preamble pattern to a plurality of predetermined frequencies.
  • information is separated for each frequency using the FFT, and the result obtained by multiplying them with the complex conjugate value of the preamble pattern is used.
  • carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern. As a result, the possibility of erroneous detection can be reduced compared to the case where carrier detection or the like is performed using only power that has been conventionally used.
  • the FFT unit 32 and the complex multiplier 53 are circuits that a general OFDM receiver normally includes for data reception, and it is not necessary to perform carrier detection and data demodulation at the same time.
  • the same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
  • the output range of the IFFT unit 12 at the time of preamble signal generation and the FFT unit 32 at the time of reception Pay attention to the phase rotation of the FFT output when the input ranges do not match, and know the timing of the preamplifier signal at which timing within the input range to the FFT unit 32. Can do.
  • the above embodiment describes the case where a preamble signal generated from a predetermined known preamble pattern is used without repetition.
  • the preamble pattern is continuously repeated a plurality of times.
  • the carrier detection and timing determination in the case where the blemble signal generated based on the repetition is used will be described.
  • the transmitter of the present embodiment has the same configuration as the transmitter of the first embodiment described above (see FIG. 1), and only the preamble signal generation operation is different from the first embodiment.
  • the receiver also has the same configuration as that of the receiver of the first embodiment (see FIG. 2), and only the carrier determination operation is different from that of the first embodiment.
  • the configuration of the carrier detection timing determination unit provided in the receiver may be the same as that in the second embodiment.
  • the transmitter differs from the transmitter of Embodiment 1 in that, in the preamble signal transmission operation, a signal is generated by repeatedly repeating the same preamble pattern a plurality of times and transmitted as a preamble signal.
  • the number of preamble pattern repetitions is L.
  • Other operations are the same as those in the first embodiment.
  • the carrier detection determination unit 56 does not immediately determine carrier detection when the threshold value is exceeded only once, but based on M (M ⁇ L) consecutive FFT processing results. If the absolute value (or the square value of the absolute value) of Z (the output of the complex summer 54) exceeds the threshold value N times (N ⁇ M), it is determined that the carrier is detected.
  • the timing determination unit 58 includes the M consecutive FFT processing results, Average of phase ⁇ of Z when carrier detection determination unit 56 determines that the threshold value is exceeded
  • is calculated using the average value of and the reception timing is determined. Or timing The determination unit 58 determines the phase of Z when the carrier detection determination unit 56 determines that the threshold value has been exceeded.
  • the carrier detection determination unit 56 determines whether ⁇ is obtained, and the average value of ⁇ is obtained.
  • the reception timing is determined using the average value of ⁇ ⁇
  • the transmitting side uses a signal that is assigned a predetermined preamble pattern to a plurality of predetermined frequencies and continuously transmitted a plurality of times as a preamble signal. To do.
  • the information obtained by separating the information for each frequency using the FFT and multiplying it by the complex conjugate value of the preamble pattern is used, as in demodulating data.
  • carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern multiple times.
  • the error is detected.
  • the possibility of performing detection can be reduced.
  • the FFT unit 32 and the complex multiplier 53 are circuits that a general OFDM receiver normally includes for data reception, and it is not necessary to perform carrier detection and data demodulation at the same time.
  • the same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
  • the IF FT at the time of preamble signal generation Pay attention to the phase rotation of the FFT output when the output range of the unit 12 and the input range of the FFT unit 32 at the time of reception do not match, and the phase deviation amount power between subcarriers Any timing within the time of the input range to the FFT unit 32 It is possible to know whether or not the beginning of the preamble signal has been received.
  • the signal detection apparatus In Embodiment 3 described above, the preamble signal transmitted by the transmitter continues the preamble pattern a plurality of times. In the present embodiment, the case where the received time waveform is averaged and used to determine the carrier detection is described. To do.
  • the transmitter of the present embodiment has the same configuration as that of the transmitter of the first embodiment described above, and only the operation of generating a preamble signal is different from that of the first embodiment.
  • This transmitter is the same as the transmitter of Embodiment 1 in that it generates a signal in which the same preamble pattern is repeated a plurality of times in succession and transmits this as a preamble signal in the preamble signal transmission operation. Different.
  • the number of repetitions of the preamble pattern is L times. Other operations are the same as those in the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration example of a receiver according to the fourth embodiment.
  • the receiver according to the present embodiment has a configuration in which a time signal averaging unit 35 is added to the receiver according to the first embodiment described above.
  • the other parts are the same as those of the receiver of the first embodiment, so the same reference numerals are given and the description thereof is omitted.
  • the receiver of this Embodiment is described as the receiver 3b.
  • the receiver 3b performs the same operation as the receiver 3 of the first embodiment. That is, when there is an input of the received signal 34, the AZD conversion unit 33 converts it into digital time waveform information and inputs the converted received signal to the FFT unit 32. Subsequent operations are the same as those shown in the first embodiment.
  • the time signal averaging unit 35 outputs the output of the AZD conversion unit 33 unit every time corresponding to the input range of the FFT unit 32.
  • the previous time waveform (1 ⁇ L) is averaged, and the averaged AZD conversion unit 33 unit output is output to the FFT unit 32.
  • the output S (t) from the time signal averaging unit 35 at time t can be expressed as the following equation (8). it can.
  • the FFT unit 32 converts the averaged time waveform S (t) expressed by the above equation (8) into frequency domain information.
  • the present embodiment has been described as a configuration in which the time signal averaging unit 35 is added to the receiver of the first embodiment, the present invention is not limited to this.
  • a configuration in which a time signal averaging unit 35 is added to the receiver of form 2 may be adopted.
  • carrier detection and timing determination carrier detection may be performed based on a plurality of determination results as described in the third embodiment.
  • the transmission side assigns a predetermined preamble pattern to each of a plurality of predetermined frequencies and uses a signal that is continuously transmitted a plurality of times as a preamble signal. To do.
  • the information is separated for each frequency using the FFT as in the case of data demodulation, and the information is separated from the complex conjugate value of the preamble pattern.
  • Carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern using the results obtained by multiplying each.
  • the FFT unit 32 and the complex multiplier 53 are circuits that a general OFDM receiver normally includes for data reception, and it is not necessary to perform carrier detection and data demodulation at the same time.
  • the same circuit can be used for carrier detection.
  • the above-described receiver can be realized with a small circuit scale. Can be realized.
  • the IF FT at the time of preamble signal generation Pay attention to the phase rotation of the FFT output when the output range of the unit 12 and the input range of the FFT unit 32 at the time of reception do not match, and the phase deviation amount power between subcarriers Any timing within the time of the input range to the FFT unit 32 It is possible to know whether or not the beginning of the preamble signal has been received.
  • the signal detection apparatus In Embodiment 4 described above, the received time waveform is averaged to determine carrier detection. However, in this embodiment, frequency information after FFT processing is averaged and used to perform keying. A case where determination of carrier detection is performed will be described.
  • the transmitter of the present embodiment has the same configuration as that of the transmitter of the first embodiment described above, and only the operation for generating a preamble signal is different from that of the first embodiment.
  • This transmitter is the same as the transmitter of Embodiment 1 in that it generates a signal in which the same preamble pattern is repeated a plurality of times in succession and transmits this as a preamble signal in the preamble signal transmission operation. Different.
  • the number of repetitions of the preamble pattern is L times. Other operations are the same as those in the first embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a receiver in the fifth embodiment.
  • the receiver of the present embodiment has a configuration in which a frequency information averaging unit 36 is added to the receiver of the first embodiment described above.
  • the other parts are the same as those of the receiver of the first embodiment, so the same reference numerals are given and the description thereof is omitted.
  • the receiver of this Embodiment is described as the receiver 3c.
  • the receiver 3c performs the same operation as the receiver 3 of the first embodiment.
  • frequency information averaging unit 36 when receiving a preamble signal and performing carrier detection and timing determination, complex data for each subcarrier, which is an output from the FFT unit 32, is input to the frequency information averaging unit 36.
  • the frequency information averaging unit 36 has a frequency for the output range of the FFT unit 32.
  • the frequency information (complex data) of the immediately preceding (1 ⁇ L) is averaged for each band, and the averaged frequency information is output to the carrier detection timing determination unit 50.
  • the carrier detection timing determination unit 50 performs carrier detection and timing determination based on the averaged frequency information D (t) expressed by the above equation (10).
  • Carrier detection motion avr Carrier detection motion avr
  • the operation and timing determination operation are the same as those shown in the first embodiment.
  • the frequency information averaging unit 36 is added to the receiver of the first embodiment.
  • the present invention is not limited to this, and the reception of the second embodiment is performed.
  • a frequency information averaging unit 36 may be added to the machine.
  • carrier detection and timing determination carrier detection or the like may be performed based on a plurality of determination results as described in the third embodiment.
  • the transmission side assigns a predetermined preamble pattern to each of a plurality of predetermined frequencies and uses a signal that is continuously transmitted a plurality of times as a preamble signal. To do.
  • preamble signal reception information is separated for each frequency using an FFT, the information after separation is averaged, and the averaged information is multiplied by the complex conjugate value of the preamble pattern.
  • FFT Fast Fourier transform
  • the FFT unit 32 is a complex multiplier 53, which is a circuit normally provided for data reception by a general OFDM receiver, and it is not necessary to perform carrier detection and data demodulation at the same time.
  • the same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
  • the IF FT at the time of preamble signal generation Pay attention to the phase rotation of the FFT output when the output range of the unit 12 and the input range of the FFT unit 32 at the time of reception do not match, and the phase deviation amount power between subcarriers Any timing within the time of the input range to the FFT unit 32 It is possible to know whether or not the beginning of the preamble signal has been received.
  • the signal detection apparatus according to the sixth embodiment will be described.
  • the received time waveform and the frequency information after FFT are averaged to determine carrier detection.
  • immediately before carrier detection and A case will be described in which information immediately before timing determination is averaged and carrier detection and timing determination are performed using the averaged information.
  • the transmitter of the present embodiment has the same configuration as that of the transmitter of the first embodiment described above, and only the preamble signal generation operation is different from that of the first embodiment.
  • This transmitter is the same as the transmitter of Embodiment 1 in that it generates a signal in which the same preamble pattern is repeated a plurality of times in succession and transmits this as a preamble signal in the preamble signal transmission operation. Different.
  • the number of repetitions of the preamble pattern is L times. Other operations are the same as those in the first embodiment.
  • the configuration of the receiver is the same as that of the receiver of Embodiment 1, but the carrier detection timing is The detailed configuration of the ring determination unit is partially different. For this reason, in the present embodiment, description of parts other than the carrier detection timing determination unit will be omitted, and only the operation of the timing detection determination unit will be described.
  • FIG. 8 is a diagram illustrating a configuration example of the carrier detection timing determination unit according to the sixth embodiment.
  • FIG. A time averaging unit 59 is added to average the information immediately before detection.
  • the carrier detection timing determination unit having this configuration is referred to as a carrier detection timing determination unit 50d.
  • portions other than the time averaging unit 59 are denoted by the same reference numerals as those of the carrier detection timing determination unit 50, and description thereof is omitted.
  • FIG. 9 is a diagram illustrating another configuration example of the carrier detection timing determination unit according to the sixth embodiment.
  • FIG. 9 illustrates the carrier detection timing determination unit 50a according to the second embodiment (see FIG. 4).
  • a time averaging unit 59 for averaging information immediately before carrier detection is added.
  • the carrier detection timing determination unit having this configuration is referred to as a carrier detection timing determination unit 50e.
  • portions other than the time averaging unit 59 are denoted by the same reference numerals as those of the carrier detection timing determination unit 50, and description thereof is omitted.
  • the time averaging unit 59 corresponding to the addition result averaging unit outputs the output of the complex summation unit 54 once (1 ⁇ L ) Minute frequency information is averaged and output. If the total value obtained at time t is Z (t) and the time for the input range of the FFT unit 32 is T, the time averaging unit 59 at time t
  • the output information Z (t) can be expressed by the following equation (11).
  • absolute value calculation unit 55 and phase calculation unit 57 show the above-described embodiment 1 or 2 based on the output from time averaging unit 59. Execute the process. And carrier detection unit 56, Taimin Based on the output from the absolute value calculation unit 55 and the output from the phase calculation unit 57, the determination unit 58 executes the process shown in the first or second embodiment described above, respectively. .
  • the power of adding time averaging section 59 to the carrier detection timing determining section provided in the receiver of Embodiment 1 or 2 is not limited to this.
  • a time averaging unit 59 may be added to the carrier detection timing determination unit that performs the operation shown in form 3.
  • the transmitting side assigns a predetermined preamble pattern to each of a plurality of predetermined frequencies, and uses a signal that is continuously transmitted a plurality of times as a preamble signal. To do.
  • information used for carrier detection and timing detection is time-averaged, and the results are used to perform carrier detection and timing determination.
  • the carrier detection is performed without averaging the information used for carrier detection and timing detection shown in the above-described embodiment when carrier detection is performed using only power that has been conventionally used. The possibility of erroneous detection can be reduced compared to the case where detection or the like is performed.
  • the FFT unit 32 is a complex multiplier 53, which is a circuit that is generally provided for data reception by a general OFDM receiver, and it is not necessary to perform carrier detection and data demodulation at the same time.
  • the same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
  • the phase rotation of the FFT output when the output range of IFFT unit 12 at the time of preamble signal generation and the input range of FFT unit 32 at the time of reception do not match
  • the power of phase deviation between subcarriers it is possible to know the key that received the beginning of the preamble signal at any timing within the input range to the FFT unit 32.
  • the signal detection apparatus is useful for a communication system, and in particular, based on a known signal, a desired signal and symbol timing can be increased with a small circuit scale. It is suitable for a receiver provided in a communication device that detects accurately.

Abstract

A signal detecting apparatus for detecting a desired OFDM modulated signal from among received signals. The signal detecting apparatus comprises an FFT part that converts received signals to first frequency domain signals of the respective carriers; a preamble pattern generating part (51) that generates second frequency domain information of the respective carriers, based on signals which include predetermined known information, have different frequencies and different initial phases and which are obtained by multiplexing signals of a plurality of carriers; complex conjugators (52) that generate complex conjugates of the second frequency domain information for the respective carriers; complex multipliers (53) that multiply the first frequency domain signals of the respective carriers by the complex conjugates of the respective carriers generated by the complex conjugators; a complex summing amplifier (54) that adds together a part or all of multiplication outputs from the multiplying means; and a signal detecting means (an absolute value calculating part (55), a carrier detecting/determining part (56)) that calculates an absolute value of an addition result or calculates a square value of the addition result and uses a predetermined threshold value to detect/determine a desired signal.

Description

明 細 書  Specification
信号検出装置  Signal detection device
技術分野  Technical field
[0001] 本発明は、通信装置を構成する受信機において所望信号の検出等を行う信号検 出装置に関するものであり、特に、既知信号を使用して所望信号の検出およびシン ボルタイミングの検出を行う信号検出装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a signal detection device that performs detection of a desired signal and the like in a receiver that constitutes a communication device, and in particular, detects a desired signal and a symbol timing using a known signal. It is related with the signal detection apparatus to perform.
背景技術  Background art
[0002] CSMA (Carrier Sense Multiple Access)方式を用いる通信システムでは、データ を送る信号の前に既知の信号波形を付して送信し、その通信システムに属する通信 機器は、この既知の信号波形が伝送路上に存在するか否力を常時監視している。そ して、通信機器は、既知の信号波形の存在を検出した場合、送信データがあっても 送信を行わず、受信動作を行うようにしている。また、 TDMA (Time Division Multip le Access)方式を用いる通信システムの場合も、端末が時分割の基本となる周期お よびタイミングに同期できるように、基地局が既知の信号波形を定期的に送信し、端 末はこの既知の信号波形を検出することで同期を行うような場合がある。このような既 知の信号波形はプリアンブルなどと呼ばれ、自機器の通信システムの信号が伝送路 上に存在している力否かを検出する動作をキャリア検出、またはキャリアセンスなどと 呼ぶことがある。  [0002] In a communication system using the CSMA (Carrier Sense Multiple Access) method, a known signal waveform is added before a signal for transmitting data, and the known signal waveform is transmitted to a communication device belonging to the communication system. It constantly monitors whether or not it exists on the transmission line. And when a communication device detects the presence of a known signal waveform, it does not transmit even if there is transmission data, and performs a receiving operation. Also, in the case of a communication system using the TDMA (Time Division Multiple Access) method, the base station periodically transmits a known signal waveform so that the terminal can synchronize with the basic period and timing of time division. In some cases, the terminal performs synchronization by detecting this known signal waveform. Such a known signal waveform is called a preamble, and the operation of detecting whether or not the signal of the communication system of the device is present on the transmission path is called carrier detection or carrier sense. is there.
[0003] 従来のキャリア検出では、通信機器は単に受信信号電力(RSSI : Received Signal  [0003] In conventional carrier detection, a communication device simply receives received signal power (RSSI).
Strength Indicator)を測定し、この測定結果に基づ 、て信号の有無を判断して ヽ た。具体的には、 RSSIの測定結果をあるしきい値と比較し、 RSSIの測定値がしきい 値より大きい場合には信号が存在すると判断し、 RSSIの測定値がしきい値より小さ V、場合には信号が存在しな 、ものと判断して 、た。  Strength Indicator) was measured, and the presence or absence of a signal was judged based on the measurement result. Specifically, the RSSI measurement result is compared with a certain threshold value, and if the RSSI measurement value is larger than the threshold value, it is determined that a signal is present, and the RSSI measurement value is smaller than the threshold value V, In case it was judged that there was no signal, it was.
[0004] また、伝送路上の信号波形と、既知の波形であるプリアンブル信号波形との相関値 を常時監視し、この相関値があるしきい値より大きい場合に信号が存在すると判断し 、一方、相関値がしきい値より小さい場合には信号が存在しないものと判断すること により、より確実に対象とする通信システムの信号の存在を検出するようにする方法 なども存在する (たとえば、特許文献 1)。 [0004] Further, the correlation value between the signal waveform on the transmission line and the preamble signal waveform which is a known waveform is constantly monitored, and when the correlation value is greater than a certain threshold, it is determined that a signal exists, A method for more reliably detecting the presence of a signal in the target communication system by determining that the signal does not exist when the correlation value is smaller than the threshold value. (For example, Patent Document 1).
[0005] さらに、変調方式として OFDM (Orthogonal Frequency Division Multiplexing)を 用いる通信システムでは、送信側で高速逆フーリエ変換 (IFFT: Inverse Fast Fouri er Transform)を用いて複数の周波数に異なる情報を載せた時間波形を生成し、受 信側では高速フーリエ変換(FFT: Fast Fourier Transform)により個々の周波数の 情報を分離する処理が行われる。この IFFTZFFTの処理単位はシンボルなどと呼 ばれ、受信の際の FFT処理では適切なシンボルタイミングを用いて受信信号を切り 出し、 FFT入力とする必要がある。このシンボルタイミングの検出にもプリアンブル信 号が用いられ、受信側では前述のキャリア検出と同様に受信波形の相関値を求め、 その相関値が最大となるピーク位置のタイミングを基準に、シンボルタイミングを検出 する方法が用いられている(たとえば、非特許文献 1)。  [0005] Furthermore, in a communication system using OFDM (Orthogonal Frequency Division Multiplexing) as a modulation method, the time at which different information is placed on multiple frequencies using fast inverse Fourier transform (IFFT) on the transmission side. A waveform is generated, and information on each frequency is separated on the receiving side by Fast Fourier Transform (FFT). The processing unit of this IFFTZFFT is called a symbol, etc. In the FFT processing at the time of reception, it is necessary to cut out the received signal using an appropriate symbol timing and use it as the FFT input. The preamble signal is also used to detect this symbol timing. The reception side obtains the correlation value of the received waveform in the same manner as the carrier detection described above, and the symbol timing is determined based on the timing of the peak position where the correlation value is maximum. Detection methods are used (for example, Non-Patent Document 1).
[0006] 特許文献 1 :特開 2005— 295085号公報 (第 3— 6頁、第 1図)  [0006] Patent Document 1: Japanese Patent Application Laid-Open No. 2005-295085 (Page 3-6, Fig. 1)
非特許文献 1 :守屋正博,久保田周治 監修「改定版 802.11高速無線 LAN教科書」 株式会社インプレス、 2005年 1月 1日、 P206-212  Non-Patent Document 1: Supervised by Masahiro Moriya and Shuji Kubota “Revised 802.11 High-Speed Wireless LAN Textbook” Impress Inc., January 1, 2005, P206-212
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、上記従来の RSSIによる検出判定では、電力のみに基づいた検出で あるため、他のシステムの信号やノイズなどの電力であっても、しきい値を超えればキ ャリア検出と判断してしまう、すなわち誤った検出を行う可能性が高いという問題があ つた o However, since the detection determination based on the conventional RSSI is based only on the power, even if the power of other system signals or noises exceeds the threshold, the carrier is detected. O There is a problem that it is judged to be a detection, that is, there is a high possibility of performing a false detection.
[0008] また、相関値を用いる方法には自己相関を用いる方法と相互相関を用いる方法が あり、自己相関では、繰返し送信される信号を対象に、繰返し期間だけ遅延させた信 号との乗算結果を積分することで相関値を求める。これに対して、相互相関では、既 知のプリアンブル信号波形と受信波形の各サンプルの乗算結果を積分することで相 関値を求める。一般に、自己相関では乗算回路力 つでよいが緩や力なピークしか 得られずタイミングの検出精度は相互相関より劣る。相互相関では相関を求めるサン プル数だけ乗算回路が必要となるが急峻なピークが得られるためタイミングの検出精 度が高い。なお、自己相関、相互相関ともに、積分にはサンプル数分の乗算結果の 総和を求める加算回路が必要であり、いずれの場合にも相関値を求める期間を長く 取るほど検出精度が高くなる一方で、回路規模が増大するという問題があった。 [0008] In addition, there are a method using autocorrelation and a method using cross-correlation as a method using a correlation value. In autocorrelation, a signal repeatedly transmitted is multiplied by a signal delayed by a repetition period. The correlation value is obtained by integrating the result. On the other hand, in cross-correlation, the correlation value is obtained by integrating the multiplication results of each sample of the known preamble signal waveform and received waveform. In general, in autocorrelation, multiplication circuit power is sufficient, but only moderate and strong peaks are obtained, and timing detection accuracy is inferior to cross-correlation. Cross-correlation requires as many multiplier circuits as the number of samples for which correlation is to be obtained. However, since a steep peak is obtained, timing detection accuracy is high. For both auto-correlation and cross-correlation, the integration results are multiplied by the number of samples. An adder circuit for obtaining the sum is required. In either case, the longer the period for obtaining the correlation value, the higher the detection accuracy, but the problem is that the circuit scale increases.
[0009] 本発明は、上記に鑑みてなされたものであって、高精度なキャリア検出およびタイミ ング検出を実現する信号検出装置を得ることを目的とする。  [0009] The present invention has been made in view of the above, and an object of the present invention is to obtain a signal detection device that realizes highly accurate carrier detection and timing detection.
課題を解決するための手段  Means for solving the problem
[0010] 上述した課題を解決し、目的を達成するために、本発明にかかる信号検出装置は 、受信信号の中力 OFDM方式で変調された所望信号を検出するための信号検出 装置であって、前記受信信号をキャリア毎の周波数領域情報 (第 1の周波数領域信 号)に変換する信号変換手段と、所定の既知情報が含まれかつ周波数および初期 位相が異なる、複数のキャリアの信号が多重化された信号に基づいて、キャリア毎の 周波数領域情報 (第 2の周波数領域情報)を生成する既知周波数情報生成手段と、 前記既知周波数情報生成手段から出力された第 2の周波数領域情報の複素共役を キャリア毎に生成する複素共役生成手段と、前記キャリア毎の第 1の周波数領域信 号と、前記複素共役生成手段により生成されたキャリア毎の複素共役と、を同一の周 波数領域同士で乗算する乗算手段と、前記乗算手段による乗算出力の一部または 全部を加算する加算手段と、前記加算結果の絶対値または当該加算結果の 2乗値 を算出し、当該算出結果および予め規定された所定のしきい値、を用いて所望信号 の検出判定を行う信号検出手段と、を備えること特徴とする。 In order to solve the above-described problems and achieve the object, a signal detection apparatus according to the present invention is a signal detection apparatus for detecting a desired signal modulated by a medium power OFDM system of a received signal. The signal conversion means for converting the received signal into frequency domain information (first frequency domain signal) for each carrier, and signals of a plurality of carriers that include predetermined known information and have different frequencies and initial phases are multiplexed. Based on the converted signal, known frequency information generating means for generating frequency domain information (second frequency domain information) for each carrier, and complex of the second frequency domain information output from the known frequency information generating means The complex conjugate generating means for generating a conjugate for each carrier, the first frequency domain signal for each carrier, and the complex conjugate for each carrier generated by the complex conjugate generating means have the same frequency. A multiplication means for multiplying the areas, an addition means for adding a part or all of the multiplication outputs of the multiplication means, an absolute value of the addition result or a square value of the addition result, Signal detecting means for performing detection determination of a desired signal using a prescribed predetermined threshold value.
発明の効果  The invention's effect
[0011] この発明によれば、受信したプリアンブル信号を FFTにて周波数領域の情報に変 換し、変換後の情報を既知のプリアンブルパターンの複素共役値とそれぞれ乗算し て得られた結果を用いて、受信したプリアンブル信号とプリアンブルパターンとの類 似性を判定することによりキャリア検出およびタイミング判定を行うようにしたので、従 来使用していた電力のみでキャリア検出等を行う場合と比較して、誤検出の発生頻 度を抑え、キャリア検出精度を高くすることができる、という効果を奏する。  According to the present invention, the received preamble signal is converted into frequency domain information by FFT, and the result obtained by multiplying the converted information by the complex conjugate value of a known preamble pattern is used. Thus, carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern, compared with the case where carrier detection is performed only with the power that was conventionally used. As a result, the frequency of erroneous detection can be suppressed, and the carrier detection accuracy can be increased.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、本発明にかかる信号検出装置を備えた通信装置に対してデータを送 信する側の通信装置 (送信機)の構成例を示す図である。 [図 2]図 2は、本発明にかかる信号検出装置を備えた通信装置 (受信機)の実施の形 態 1の構成例を示す図である。 FIG. 1 is a diagram illustrating a configuration example of a communication device (transmitter) on a side that transmits data to a communication device including a signal detection device according to the present invention. FIG. 2 is a diagram illustrating a configuration example of a first embodiment of a communication device (receiver) including a signal detection device according to the present invention.
[図 3]図 3は、実施の形態 1のキャリア検出タイミング判定部の構成例を示す図である [図 4]図 4は、実施の形態 2のキャリア検出タイミング判定部の構成例を示す図である [図 5]図 5は、 FFT入力範囲に対するプリアンブル信号先頭位置と Θ の関係の一例  FIG. 3 is a diagram illustrating a configuration example of a carrier detection timing determination unit according to Embodiment 1. FIG. 4 is a diagram illustrating a configuration example of a carrier detection timing determination unit according to Embodiment 2. [Figure 5] Figure 5 shows an example of the relationship between the leading position of the preamble signal and Θ relative to the FFT input range.
Z  Z
を示す図である。 FIG.
[図 6]図 6は、実施の形態 4の受信機の構成例を示す図である。  FIG. 6 is a diagram illustrating a configuration example of a receiver according to the fourth embodiment.
[図 7]図 7は、実施の形態 5の受信機の構成例を示す図である。 FIG. 7 is a diagram illustrating a configuration example of a receiver according to the fifth embodiment.
[図 8]図 8は、実施の形態 6のキャリア検出タイミング判定部の構成例を示す図である FIG. 8 is a diagram illustrating a configuration example of a carrier detection timing determination unit according to the sixth embodiment.
[図 9]図 9は、実施の形態 6のキャリア検出タイミング判定部の別の構成例を示す図で ある。 FIG. 9 is a diagram illustrating another configuration example of the carrier detection timing determination unit according to the sixth embodiment.
符号の説明 Explanation of symbols
1 送信機  1 Transmitter
2 伝送路  2 Transmission path
3、3b、3c 受信機  3, 3b, 3c receiver
10 送信情報  10 Transmission information
11 変調部  11 Modulator
12 IFFT咅  12 IFFT
13 デジタル Zアナログ変換部(DZA)  13 Digital Z analog converter (DZA)
14 送信信号  14 Transmission signal
30 受信情報  30 Received information
31 復調部  31 Demodulator
32 FFT咅  32 FFT
33 アナログ Zデジタル変換部 (AZD)  33 Analog Z to Digital Converter (AZD)
34 受信信号 35 時間信号平均化部 34 Received signal 35 Time signal averaging section
36 周波数情報平均化部  36 Frequency information averaging unit
40 プリアンブル生成部  40 Preamble generator
50、 50a、 50d、 50e キャリア検出タイミング判定部  50, 50a, 50d, 50e Carrier detection timing judgment unit
51 プリアンブルパターン生成部  51 Preamble pattern generator
52 複素共役器  52 Complex conjugate
53 複素乗算器  53 Complex multiplier
54 総ロ^  54 Total
55 絶対値算出部  55 Absolute value calculator
56 キャリア検出判定部  56 Carrier detection judgment part
57 位相算出部  57 Phase calculator
58 タイミング判定部  58 Timing judgment section
59 時間平均化部  59 Time averaging section
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下に、本発明にかかる信号検出装置の実施の形態を図面に基づいて詳細に説 明する。なお、この実施の形態によりこの発明が限定されるものではない。  Hereinafter, an embodiment of a signal detection device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[0015] 実施の形態 1.  [0015] Embodiment 1.
図 1は、本発明にかかる信号検出装置を備えた通信装置に対してデータを OFDM 変調して送信する通信装置 (送信機)の構成例を示す図であり、 1が送信機を示す。 この送信機 1は、 bit列力もなる送信情報 10を入力とし、その変調結果を出力する変 調部 11と、変調部 11の出力を周波数領域力も時間領域へ変換する IFFT部 12と、 I FFT部 12の出力をアナログ形式に変換するデジタル Zアナログ変換部 (D/A) 13 と、キャリア検出およびタイミング判定を行うための既知信号 (以後、プリアンブルと呼 ぶ)を生成する際に、その元となるプリアンブルパターンを生成するプリアンブル生成 部 40を備える。なお、 14はアナログ変換された送信信号、 2は伝送路である。  FIG. 1 is a diagram showing a configuration example of a communication apparatus (transmitter) that transmits data by OFDM modulation to a communication apparatus including a signal detection apparatus according to the present invention, and 1 indicates a transmitter. This transmitter 1 has transmission information 10 that also has bit string power as input, a modulation section 11 that outputs the modulation result, an IFFT section 12 that converts the output of the modulation section 11 into frequency domain power, and I FFT The digital Z / analog converter (D / A) 13 that converts the output of the unit 12 into an analog format and the known signal (hereinafter called the preamble) for carrier detection and timing determination A preamble generation unit 40 for generating a preamble pattern to be 14 is an analog converted transmission signal, and 2 is a transmission path.
[0016] また、図 2は、本発明にかかる信号検出装置を備えた通信装置 (受信機)の実施の 形態 1の構成例を示す図であり、 3が受信機を示す。この受信機 3は、送信側からの 受信信号 34をデジタル形式に変換するアナログ Zデジタル変換部 (A/D) 33と、 A ZD変換部 33の出力を時間領域カゝら周波数領域へ変換する FFT部 32と、 FFT部 3 2の出力を復調して bit列力もなる受信情報 30を生成する復調部 31と、 FFT部 32の 出力に基づいてキャリア検出およびタイミング検出を行うキャリア検出タイミング判定 部 50と、を備える。なお、 2は、図 1に示したものと同じ伝送路であり、通信システムを 形成する送信機 1および受信機 3は、この伝送路 2を介して信号のやりとりを行う。 FIG. 2 is a diagram showing a configuration example of the first embodiment of the communication device (receiver) including the signal detection device according to the present invention, and 3 shows the receiver. The receiver 3 includes an analog Z / digital converter (A / D) 33 that converts the received signal 34 from the transmission side into a digital format, and A An FFT unit 32 that converts the output of the ZD conversion unit 33 from the time domain to the frequency domain, a demodulator 31 that demodulates the output of the FFT unit 32 and generates reception information 30 that also has bit string power, and an FFT unit 32 And a carrier detection timing determination unit 50 that performs carrier detection and timing detection based on the output of. 2 is the same transmission path as shown in FIG. 1, and the transmitter 1 and the receiver 3 forming the communication system exchange signals via this transmission path 2.
[0017] つづいて、上述した構成の送信機 1および受信機 3の詳細動作について説明する 。ここでは、送信機 1が送信情報 10に基づいて送信信号を生成し、この生成された 信号を受信機 3が受信し、その復調を行って受信信号 30を生成する (送信情報 10を 復元する)動作を説明する。  Next, detailed operations of the transmitter 1 and the receiver 3 configured as described above will be described. Here, the transmitter 1 generates a transmission signal based on the transmission information 10, the receiver 3 receives the generated signal, and demodulates it to generate the reception signal 30 (restore the transmission information 10). ) The operation will be described.
[0018] まず、送信機 1がプリアンブル信号の送信を含む、信号送信動作を図 1に基づいて 説明する。プリアンブル信号を送信する場合、プリアンブル生成部 40は、あらかじめ 定められた既知のプリアンブルパターンを生成する。このプリアンブルパターンは、た とえば M系列と呼ばれるような' 0'と' 1 'の bit列からなる擬似ランダムパターンである 。生成されたプリアンブルパターンは、変調部 11に入力され、変調部 11は、たとえば BPSK (Binary Phase Shift Keying)や QPSK (Quadrate Phase Shift Keying) , Q AM (Quadrate Amplitude Modulation)などの変調方式に応じて、入力されたプリア ンブルパターン (bit列)をサブキャリア毎に分割し、さらに複素平面上にマッピングす る。たとえば、プリアンブルパターンを BPSK変調するものとした場合、プリアンブル 生成部 40力も入力された bit列を lbitずつ分割し、 '0'であれば "— l + 0j"、 ' 1 'で あれば" 1 + Oj"というように、複素平面上の 2点を表す複素データに変換する。  First, a signal transmission operation in which the transmitter 1 includes transmission of a preamble signal will be described with reference to FIG. When transmitting a preamble signal, the preamble generation unit 40 generates a known preamble pattern that is determined in advance. This preamble pattern is a pseudo-random pattern consisting of a bit string of “0” and “1”, for example, called an M-sequence. The generated preamble pattern is input to the modulation unit 11. The modulation unit 11 is in accordance with a modulation scheme such as BPSK (Binary Phase Shift Keying), QPSK (Quadrate Phase Shift Keying), or QAM (Quadrate Amplitude Modulation). The input preamble pattern (bit string) is divided for each subcarrier and further mapped onto the complex plane. For example, if the preamble pattern is to be BPSK modulated, the bit string that is also input to the preamble generator 40 is divided into lbits. If it is “0”, it is “—l + 0j”, if it is “1”, it is “1”. + Oj "to convert to complex data representing two points on the complex plane.
[0019] 変調部 11で生成された複素データは、サブキャリア毎の周波数領域の情報として I FFT部 12に入力される。 IFFT部 12は、入力された情報を時間領域情報に変換し、 サブキャリア毎の波形を合成した合成波と等しいデジタル時間波形情報を出力する 。さらに、デジタル時間波形情報は、デジタル Zアナログ変換部(以下、 DZA変換 部と呼ぶ) 13によりアナログ形式の信号に変換され、送信信号 14として伝送路 2へ送 出される。  [0019] The complex data generated by the modulation unit 11 is input to the I FFT unit 12 as frequency domain information for each subcarrier. The IFFT unit 12 converts the input information into time domain information, and outputs digital time waveform information equal to a combined wave obtained by combining waveforms for each subcarrier. Further, the digital time waveform information is converted into an analog signal by a digital Z analog conversion unit (hereinafter referred to as a DZA conversion unit) 13 and sent to the transmission path 2 as a transmission signal 14.
[0020] なお、プリアンブルパターンは全てのサブキャリアに割り当てても、一部のサブキヤリ ァのみを用 ヽて割り当てるようにしても良 、。 [0021] また、送信情報 10を送信する場合には、変調部 11への入力がプリアンブル生成部 40から入力される既知パターンに代えて任意の送信情報 bit列 (送信情報 10)となる 点が異なるのみで、変調部 11、 IFFT部 12および DZA変換部 13の基本的な動作 は、上述したプリアンブル信号送信時の動作と同様である。ただし、送信情報の変調 方式はプリアンブルの変調方式と同じである必要はなぐ他の変調方式を用いても良 い。 [0020] Note that the preamble pattern may be assigned to all subcarriers or only some of the subcarriers may be used. [0021] Also, when transmitting the transmission information 10, the input to the modulation unit 11 becomes an arbitrary transmission information bit string (transmission information 10) instead of the known pattern input from the preamble generation unit 40. The basic operations of the modulation unit 11, the IFFT unit 12, and the DZA conversion unit 13 are the same as the operations at the time of preamble signal transmission described above. However, the transmission information modulation scheme need not be the same as the preamble modulation scheme, and other modulation schemes may be used.
[0022] なお、プリアンブル生成部 40の実現方法には、 M系列のような擬似ランダム系列で あればシフトレジスタと XOR演算回路を用いてプリアンブルパターンを生成する方法 や、メモリとしてあら力じめプリアンブルパターンを記憶させておく方法などがある。ま た、プリアンブル生成部 40をメモリ構成とする場合、プリアンブル信号のデジタル時 間波形情報を格納するようにしてもよい。この場合、プリアンブル生成部 40の出力は 、 DZA変換部 13へ直接入力する。  [0022] It should be noted that the implementation method of the preamble generation unit 40 includes a method of generating a preamble pattern using a shift register and an XOR operation circuit if it is a pseudo-random sequence such as an M sequence, or a preamble as a memory. There is a method of storing patterns. When the preamble generation unit 40 has a memory configuration, digital time waveform information of the preamble signal may be stored. In this case, the output of the preamble generation unit 40 is directly input to the DZA conversion unit 13.
[0023] つぎに、受信機 3が、伝送路 2を介して信号 (受信信号 34)を受信した場合の動作 について説明する。データの受信時には、受信信号 34の入力があると、アナログ Z デジタル変換部(以下、 AZD変換部と呼ぶ) 33は、それをデジタル時間波形情報に 変換する。信号変換手段に相当する FFT部 32は、 AZD変換部 33からの入力を周 波数領域へ変換することにより、サブキャリア毎の周波数領域情報として複素データ を生成する。復調部 31は、たとえば、 BPSK、 QPSK、 QAMなどのあらかじめ定めら れた復調方式に応じて、 AZD変換部 33からの入力を、サブキャリア毎に bit列にデ マップし、連続した bit列として受信情報 30を生成する。  Next, an operation when the receiver 3 receives a signal (received signal 34) via the transmission path 2 will be described. At the time of data reception, if there is an input of the reception signal 34, an analog Z digital conversion unit (hereinafter referred to as AZD conversion unit) 33 converts it into digital time waveform information. The FFT unit 32 corresponding to the signal conversion means generates complex data as frequency domain information for each subcarrier by converting the input from the AZD conversion unit 33 into the frequency domain. The demodulator 31 demaps the input from the AZD converter 33 to a bit string for each subcarrier according to a predetermined demodulation method such as BPSK, QPSK, QAM, etc. Receive information 30 is generated.
[0024] プリアンブル信号の受信処理にっ 、ても、 FFT部 32が、 AZD変換部 33入力を時 間領域力 周波数領域への変換を行う動作まではデータの受信処理と同じである。 そして、プリアンブル信号受信時には、 FFT部 32により生成されたサブキャリア毎の 複素データがキャリア検出タイミング判定部 50に入力され、キャリア検出タイミング判 定部 50がキャリア検出およびタイミング判定を行う。  [0024] The preamble signal reception process is the same as the data reception process until the FFT unit 32 converts the input of the AZD conversion unit 33 into a time domain power frequency domain. When receiving the preamble signal, the complex data for each subcarrier generated by the FFT unit 32 is input to the carrier detection timing determination unit 50, and the carrier detection timing determination unit 50 performs carrier detection and timing determination.
[0025] つづいて、キャリア検出タイミング検出部 50の動作について説明する。図 3は、本 実施の形態の受信機に含まれるキャリア検出タイミング判定部 50の構成例を示す図 である。このキャリア検出タイミング検出部 50は、送信機 1から送信されるものと同じ 既知信号 (プリアンブル信号)のサブキャリア毎の周波数情報を生成するプリアンプ ルパターン生成部 51と、複素数を複素共役値に変換する複素共役器 52と、複素乗 算器 53と、複数の複素数の総和を算出する複素総和器 54と、複素数の絶対値を算 出する絶対値算出部 55と、当該算出された複素数の絶対値をあらかじめ定められた しきい値と比較し、絶対値がしきい値以上の場合にキャリアを検出したと判定するキヤ リア検出判定部 56と、を備える。 [0025] Next, the operation of the carrier detection timing detection unit 50 will be described. FIG. 3 is a diagram illustrating a configuration example of the carrier detection timing determination unit 50 included in the receiver according to the present embodiment. The carrier detection timing detection unit 50 is the same as that transmitted from the transmitter 1. A preamble pattern generator 51 that generates frequency information for each subcarrier of a known signal (preamble signal), a complex conjugate 52 that converts complex numbers to complex conjugate values, a complex multiplier 53, and a sum of multiple complex numbers The complex summation unit 54 for calculating the absolute value, the absolute value calculation unit 55 for calculating the absolute value of the complex number, and the absolute value of the calculated complex number are compared with a predetermined threshold value. A carrier detection determination unit 56 that determines that a carrier has been detected in the above case.
[0026] FFT部 32からキャリア検出タイミング検出部 50へ入力されるサブキャリア毎の複素 数情報を X (iはサブキャリア番号)とする。キャリア検出タイミング検出部 50において 、既知周波数情報生成手段に相当するプリアンブルパターン生成部 51は、プリアン ブル信号におけるサブキャリア毎の複素数情報 P (iはサブキャリア番号)を生成し、 それらを複素共役生成手段に相当する複素共役器 52が複素共役値 P*に変換する 。その後、乗算手段に相当する複素乗算器 53が上記 P*を受信信号の複素数情報 X と乗算して Yを得る。さらに、加算手段に相当する複素総和器 54により Yの総和値 Z を算出する。こうして得られる Zは次式(1)で表すことができる。  [0026] The complex number information for each subcarrier input from the FFT unit 32 to the carrier detection timing detection unit 50 is X (i is a subcarrier number). In the carrier detection timing detection unit 50, a preamble pattern generation unit 51 corresponding to known frequency information generation means generates complex number information P (i is a subcarrier number) for each subcarrier in the preamble signal, and generates complex conjugate thereof. A complex conjugate 52 corresponding to the means converts to a complex conjugate value P *. Thereafter, the complex multiplier 53 corresponding to the multiplication means multiplies the P * by the complex number information X of the received signal to obtain Y. Further, the sum total value Z of Y is calculated by the complex summation device 54 corresponding to the adding means. Z thus obtained can be expressed by the following equation (1).
[0027] [数 1]  [0027] [Equation 1]
i=0 i=0 i = 0 i = 0
•••(1) ••• (1)
[0028] そして、絶対値算出部 55は、複素総和器 54が出力した総和値 Zの絶対値を求める 。 Zも複素数であり、それを" Z=A+Bj"とした場合、これの絶対値は次式(2)で示さ れる。  [0028] Then, the absolute value calculation unit 55 calculates the absolute value of the total value Z output from the complex totalizer 54. Z is also a complex number, and when it is “Z = A + Bj”, the absolute value of this is given by the following equation (2).
[0029] [数 2]  [0029] [Equation 2]
|Z| = VA2 + B2 | Z | = VA 2 + B 2
•••(2) ••• (2)
[0030] また、上式(2)に示した絶対値 (振幅に相当)の代わりに、次式(3)に示すような総 和値 Zの 2乗値 (電力に相当)を絶対値算出部 55が算出するなどし、キャリア検出判 定部 56が総和値 Zの 2乗値を用いてキャリア検出を行うようにしてもよい。 Z2=A2 + B2 - -- (3) [0030] Instead of the absolute value (corresponding to amplitude) shown in the above equation (2), the absolute value of the square value of the total value Z (corresponding to power) as shown in the following equation (3) is calculated. The carrier detection / determination unit 56 may perform carrier detection using the square value of the total value Z, for example, by the calculation by the unit 55. Z 2 = A 2 + B 2 --(3)
[0031] また、全てのサブキャリアについての総和値 (乗算結果 Y;を全て加算したもの)を用 V、るのではなぐ一部のサブキャリアのみにっ 、ての加算値 (乗算結果 Y;の中から一 部選択したものについての加算値)を算出し、その加算結果を用いて以降の処理を 行うようにしてもよい。なお、絶対値算出部 55およびキャリア検出部 56が信号検出手 段を構成する。 [0031] In addition, the total value for all the subcarriers (the sum of all the multiplication results Y ; ) is used as V, and instead of only some of the subcarriers (the multiplication result Y ; (Addition value for a part selected from the above) may be calculated, and the subsequent processing may be performed using the addition result. The absolute value calculation unit 55 and the carrier detection unit 56 constitute a signal detection unit.
[0032] ここで、上式(2)または(3)を使用してキャリア検出が可能な理由について説明する 。受信信号の複素数情報 Xとプリアンブルパターンの複素共役値 P*を乗算すること により、受信信号がプリアンブル信号であれば乗算結果 Yは、どのサブキャリアでも" Ι + Oj"となり、その総和値は" k+Oj"、総和値の絶対値は kとなる。一方、受信信号 がプリアンブル信号と異なる信号であれば Y;は、サブキャリア毎に異なる値となり、総 和値の絶対値は kより小さな値となる。プリアンブルパターンとして M系列のような擬 似ランダムパターンを用いていれば、サブキャリア数が多いほど、プリアンブル信号 以外を受信した場合の総和値の絶対値は 0 (ゼロ)に近づく。 Here, the reason why carrier detection is possible using the above formula (2) or (3) will be described. By multiplying the complex number information X of the received signal by the complex conjugate value P * of the preamble pattern, if the received signal is a preamble signal, the multiplication result Y is “Ι + Oj” for any subcarrier, and the sum is “ k + Oj ", the absolute value of the sum is k. On the other hand, if the received signal is a signal different from the preamble signal, Y ; will have a different value for each subcarrier, and the absolute value of the total value will be smaller than k. If a pseudo-random pattern such as an M-sequence is used as the preamble pattern, the larger the number of subcarriers, the closer to 0 (zero) the absolute value of the total value when other than the preamble signal is received.
[0033] 通信を行う実環境においては、伝送路特性により振幅や位相は変化するためプリ アンブル信号を受信した場合であっても、上記絶対値が kになるとは限らないが、複 数のサブキャリアの総和をとることにより、プリアンブル信号を受信した場合と、その他 の信号を受信した場合の絶対値には明確な差を生じることになる。そのため、キヤリ ァ検出判定部 56は、上記絶対値が、伝送路特性などを考慮して予め定められた信 号検出判定用のしきい値を超えた場合にキャリア検出と判定することができ、プリアン ブル信号が存在するタイミングを検出できる。プリアンブルパターンを BPSK変調す る場合を例として説明したが、他の変調方式を使用した場合も同様である。  [0033] In an actual environment in which communication is performed, the amplitude and phase change depending on the transmission path characteristics. Therefore, even when a preamble signal is received, the absolute value is not necessarily k. By taking the sum of the carriers, there is a clear difference between the absolute values when the preamble signal is received and when other signals are received. Therefore, the carrier detection determination unit 56 can determine carrier detection when the absolute value exceeds a predetermined threshold for signal detection determination in consideration of transmission path characteristics and the like. The timing when the preamble signal is present can be detected. The case where the preamble pattern is BPSK modulated has been described as an example, but the same applies when other modulation schemes are used.
[0034] 信号検出判定用のしきい値は、プリアンブル信号を受信した場合の総和値の絶対 値とプリアンブル信号以外を受信した場合の総和値の絶対値の関係に基づ!/、て決 定する。たとえば、プリアンブルパターンとして使用するビットパターン、キャリア検出 判定時の比較対象 (L V、値と比較する対象として総和値の「絶対値」 , 「絶対値の 2 乗値」のどちらを使用するのか)、総和値を算出する際に加算する情報の種類 (キヤリ ァ検出タイミング判定部への入力 Xに対してどのような処理を実行して得た情報をカロ 算するのか)、総和値を算出する際の加算対象数 (加算する情報の数)、などを考慮 して決定する。なお、伝送路特性を考慮して予め決定しておいた複数のしきい値の 中から、伝送路特性に応じて適宜最適なしきい値を選択して使用するようにしてもよ Vヽし、予め決定してぉ ヽたしき ヽ値を伝送路特性に応じて適宜調整しながら使用す るようにしてちょい。 [0034] The threshold for signal detection determination is determined based on the relationship between the absolute value of the total value when a preamble signal is received and the absolute value of the total value when a signal other than the preamble signal is received! / To do. For example, the bit pattern used as the preamble pattern, the comparison target at the time of carrier detection judgment (LV, whether to use the absolute value of the total value or the square value of the absolute value as the value to be compared), Type of information to be added when calculating the total value (what kind of processing is performed on the input X to the carrier detection timing judgment unit) To be calculated) and the number of objects to be added when calculating the total value (number of information to be added). It is also possible to select and use the optimum threshold value as appropriate according to the transmission path characteristics from a plurality of threshold values determined in advance in consideration of the transmission path characteristics. Decide it in advance and use it while adjusting the appropriate value according to the transmission path characteristics.
[0035] このように、本実施の形態においては、送信側は、あら力じめ定めた複数の周波数 に、それぞれあらカゝじめ定めプリアンブルパターンを割り当てたものをプリアンブル信 号として送信する。一方、受信側では、プリアンブル信号受信時も、データ復調時と 同様に FFTを用いて周波数毎に情報を分離し、それらをプリアンブルパターンの複 素共役値とそれぞれ乗算して得られた結果を用いて、受信したプリアンブル信号とプ リアンブルパターンとの類似性を判定することによりキャリア検出およびタイミング判定 を行うようにした。これにより、従来使用していた電力のみでキャリア検出等を行う場 合と比較して、誤検出を行う可能性を小さくすることができる。  As described above, in the present embodiment, the transmission side transmits, as preamble signals, signals that have been assigned a predetermined preamble pattern to a plurality of predetermined frequencies. On the other hand, at the time of receiving the preamble signal, on the other hand, when the preamble signal is received, information is separated for each frequency using the FFT, and the result obtained by multiplying them with the complex conjugate value of the preamble pattern is used. Thus, carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern. As a result, the possibility of erroneous detection can be reduced compared to the case where carrier detection or the like is performed using only power that has been conventionally used.
[0036] また、上記 FFT部 32ゃ複素乗算器 53は、一般的な OFDM受信器がデータ受信 のために通常備えている回路であり、キャリア検出とデータの復調は同時に行う必要 がないので、同じ回路をキャリア検出に用いることが可能である。すなわち、従来の時 間領域の相関によるキャリア検出と比較して、少ない回路規模で上述した受信機を 実現することができる。  [0036] Further, the FFT unit 32 and the complex multiplier 53 are circuits normally provided for data reception by a general OFDM receiver, and it is not necessary to perform carrier detection and data demodulation at the same time. The same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
[0037] 実施の形態 2.  [0037] Embodiment 2.
つづいて、実施の形態 2の信号検出装置について説明する。上述した実施の形態 1では、受信信号の FFT結果とプリアンブルパターンの共役複素値の複素乗算結果 の総和を用いてキャリア検出の判定を行うようにしたものである力 本実施の形態に おいては、プリアンブルパターンの共役複素数値の複素乗算結果をさらに、 2つのサ ブキャリア間で共役複素乗算を行った結果を用いて、プリアンブル信号受信タイミン グを FFTに入力される時間間隔より細かな単位で判定する場合について説明する。  Next, the signal detection apparatus according to the second embodiment will be described. In the first embodiment described above, the carrier detection determination is performed by using the sum of the FFT result of the received signal and the complex multiplication result of the conjugate complex value of the preamble pattern. The preamble signal reception timing is determined in finer units than the time interval input to the FFT using the result of the complex multiplication of the conjugate complex value of the preamble pattern and the result of conjugate complex multiplication between the two subcarriers. The case where it does is demonstrated.
[0038] 本実施の形態の送信機は、上述した実施の形態 1の送信機と同様の構成(図 1参 照)をとる。また、受信機は、実施の形態 1の受信機と同様の構成(図 2参照)をとるが 、キャリア検出タイミング判定部の詳細構成が一部異なる。そのため、本実施の形態 においては、キャリア検出タイミング判定部以外の部分については、その説明を省略 し、タイミング検出判定部 (本実施の形態ではタイミング検出判定部 50aとする)の動 作についてのみ説明を行う。 [0038] The transmitter of the present embodiment has a configuration similar to that of the transmitter of the first embodiment described above (see FIG. 1). The receiver has the same configuration as that of the receiver of Embodiment 1 (see FIG. 2), but the detailed configuration of the carrier detection timing determination unit is partially different. Therefore, this embodiment In the above, description of parts other than the carrier detection timing determination unit will be omitted, and only the operation of the timing detection determination unit (in this embodiment, the timing detection determination unit 50a) will be described.
[0039] 図 4は、実施の形態 2のキャリア検出タイミング判定部 50aの構成例を示す図である 。このキャリア検出タイミング判定部 50aは、実施の形態 1のキャリア検出タイミング判 定部 50に対して、複素乗算器 53の後段にさらに (第 2の)複素共役器 52および (第 2 の)複素乗算器が追加され、また、位相算出部 57およびタイミング判定部 58が追カロ された構成をとる。なお、その他の部分については、キャリア検出タイミング判定部 50 と同一の符号を付してその説明は省略する。  FIG. 4 is a diagram illustrating a configuration example of the carrier detection timing determination unit 50a according to the second embodiment. This carrier detection timing determination unit 50a further adds a (second) complex conjugate 52 and a (second) complex multiplication after the complex multiplier 53 to the carrier detection timing determination unit 50 of the first embodiment. And a phase calculation unit 57 and a timing determination unit 58 are added. Other portions are denoted by the same reference numerals as those of the carrier detection timing determination unit 50, and the description thereof is omitted.
[0040] 上述した構成のキャリア検出タイミング判定部 50aにおいて、後段の複素共役器 52 は、前段の複素乗算器 53出力の Y以外 (すなわち Y、 Y、 · ··、 Y )を複素共役値( k 1 2 k-1  [0040] In the carrier detection timing determination unit 50a having the above-described configuration, the subsequent complex conjugate unit 52 converts a complex conjugate value (Y, Y, ..., Y) other than Y (ie, Y, Y, ..., Y) from the output of the preceding complex multiplier 53. k 1 2 k-1
Y *、 Y *、 · ··、 Y *)に変換する。後段の複素乗算器 53は、後段の複素共役器 52出 Y *, Y *, ..., Y *). The downstream complex multiplier 53 is connected to the complex conjugate 52
1 2 k-1 1 2 k-1
力 (Y *、 Y *、 · ··、 Y *)と前段の複素乗算器 53出力の Y以外 (すなわち Y、 Y、 · · ·、 Force (Y *, Y *, ..., Y *) and complex multiplier in the previous stage, except for 53 output Y (ie, Y, Y, ...
1 2 k-1 1 2 31 2 k-1 1 2 3
Y )をそれぞれ乗算する。複素総和器 54は、後段の複素乗算器 53出力の総和値 Z k Y) respectively. The complex summation unit 54 is the summation value Z k of the output of the complex multiplier 53 in the subsequent stage.
を算出する。ここで、後段の複素乗算器 53出力を Y' とすると、総和値 Zは、次式(  Is calculated. Here, assuming that the output of the subsequent complex multiplier 53 is Y ′, the total value Z is given by the following equation (
i-(i-l)  i- (i-l)
4)で表すことができる。  4).
[0041] [数 3] z =∑Y' -(i-i) =∑ . Y =∑(x ) · (Xi-i · Pi- i=l i=l i=l Γ)* [0041] [Equation 3] z = ∑Y '-(i-i) = ∑. Y = ∑ (x) · (Xi-i · Pi- i = l i = l i = l Γ) *
•••(4) •••(Four)
[0042] ここで、後段の複素共役器 52および後段の複素乗算器 53を追加した理由につ ヽ て説明する。受信したプリアンブル信号を FFT部 32に入力する際の入力範囲が送 信側の生成時の出力範囲と一致しない場合、プリアンブル信号の複素数情報 Xとプ リアンブルパターンの複素共役値 P*の乗算結果 Yは、ベクトルとして見た場合 IFFT 部 12の出力範囲と受信時の FFT部 32の入力範囲のズレ量および各サブキャリアの 周波数に応じた位相回転を生じる。その結果、上記各 Yをそのまま複素加算すると、 位相の違いにより互いに打ち消しあう成分が生じてしまう。そのため、隣接サブキヤリ ァの複素共役値 Y *に対して Yをさらに複素乗算して得られる Y' は、サブキャリア  Here, the reason why the latter complex conjugate 52 and the latter complex multiplier 53 are added will be described. If the input range when the received preamble signal is input to the FFT unit 32 does not match the output range at the time of generation on the transmission side, the multiplication result of the complex number information X of the preamble signal and the complex conjugate value P * of the preamble pattern When viewed as a vector, Y causes a phase rotation corresponding to the amount of deviation between the output range of the IFFT unit 12 and the input range of the FFT unit 32 during reception and the frequency of each subcarrier. As a result, if Y is complex-added as it is, components that cancel each other out due to the difference in phase will occur. Therefore, Y ′ obtained by further complex multiplication of Y to the complex conjugate value Y * of the adjacent subcarrier is subcarrier
i-1 i i-G-1) 間隔周波数に応じた位相回転量を持つベクトルとなり、サブキャリア間隔周波数が一 定であれば、どのサブキャリア間でも同じ位相を持つベクトル (複素数情報)となる。 i-1 i iG-1) The vector has a phase rotation amount according to the interval frequency. If the subcarrier interval frequency is constant, it becomes a vector (complex number information) having the same phase between all subcarriers.
[0043] 複素総和器 54の出力は、絶対値算出部 55および位相算出部 57へ入力される。絶 対値算出部 55およびキャリア検出判定部 56における処理は、上述した実施の形態 1と同様である。ただし、キャリア検出判定部 56が使用する信号検出判定用のしきい 値は、実施の形態 1において使用したものと異なる。すなわち、キャリア検出判定部 5 6は、たとえば複素総和器 54が総和値を算出する際に加算する情報の種類 (複素共 役器 52および複素乗算器 53がキャリア検出タイミング判定部への入力 Xに対してど のような処理を実行して得た情報を加算するのか)を考慮して、実施の形態 1におい て使用したしきい値を変形などして得られるものを使用する。  The output of the complex summation device 54 is input to the absolute value calculation unit 55 and the phase calculation unit 57. The processing in absolute value calculation unit 55 and carrier detection determination unit 56 is the same as that in the first embodiment described above. However, the threshold for signal detection determination used by carrier detection determination unit 56 is different from that used in the first embodiment. That is, the carrier detection determination unit 56, for example, the type of information to be added when the complex summation unit 54 calculates the summation value (the complex multiplier 52 and the complex multiplier 53 are input to the input X to the carrier detection timing determination unit). The information obtained by modifying the threshold value used in the first embodiment is used in consideration of what kind of processing is executed and adding the information obtained by the processing.
[0044] 実施の形態 1では、キャリア検出判定 56において、入力値 (絶対値算出部 55の出 力)がしきい値を超えた時点をプリアンブル信号の検出タイミングとしていた。しかしな がら、 FFT部 32に入力される時間波形は FFT部 32の入力範囲に応じた時間間隔 の幅があり、この時間間隔以上のタイミング情報は得られない (検出精度を上げること ができない)。そのため、本実施の形態においては、さらに詳細なタイミングを得るた め、まず位相算出器 57が、次式(5)を用いて総和値 Zの位相を求める。  In the first embodiment, the timing at which the input value (the output of the absolute value calculation unit 55) exceeds the threshold in the carrier detection determination 56 is used as the preamble signal detection timing. However, the time waveform input to the FFT unit 32 has a time interval width corresponding to the input range of the FFT unit 32, and timing information beyond this time interval cannot be obtained (detection accuracy cannot be increased). . Therefore, in the present embodiment, in order to obtain more detailed timing, first, the phase calculator 57 obtains the phase of the total value Z using the following equation (5).
[0045] [数 4] tan_1(B/A) (if Α > 0)[0045] [ Equation 4] tan _1 (B / A) (if Α> 0)
Figure imgf000014_0001
tan一1 (Β/Α) + π (ば A < 0&B≥0)
Figure imgf000014_0001
tan 1 1 (Β / Α) + π (if A <0 & B≥0)
ί3η_1(Β/Α) - π (if A < 0&B < 0) ί3η _1 (Β / Α)-π (if A <0 & B <0)
•••(5) •••(Five)
また、図 5は、 FFT入力範囲に対するプリアンブル信号先頭位置と 0 の関係の一  Figure 5 shows the relationship between the preamble signal start position and 0 for the FFT input range.
Z  Z
例を示す図である。前述したように、プリアンブル信号生成時の IFFT部 12の出力範 囲と受信時の FFT部 32の入力範囲が一致しない場合、 Y は FFT部 32の入力範  It is a figure which shows an example. As described above, if the output range of IFFT section 12 at the time of preamble signal generation does not match the input range of FFT section 32 at the time of reception, Y is the input range of FFT section 32.
i-(i-l)  i- (i-l)
囲のズレ量とサブキャリア間隔周波数に応じた位相回転を生じたものとなる。そこで、 タイミング判定器 58は、次式 (6)を用いて現在の FFT部 32への受信信号入力範囲 とプリアンブルの先頭位置のズレ量 ΔΤ を算出し、 ΔΤ を使用して受信タイミング  Phase rotation corresponding to the amount of deviation of the surroundings and the subcarrier interval frequency occurs. Therefore, the timing determiner 58 uses the following equation (6) to calculate the deviation ΔΤ between the current received signal input range to the FFT unit 32 and the start position of the preamble, and uses ΔΤ to determine the reception timing.
FFT FFT  FFT FFT
を判定する。ここで T は FFT部 32の入力範囲に相当する時間である。なお、位相 算出部 57およびタイミング判定部 58がタイミング判定手段を構成する c [数 5] Determine. Here, T is a time corresponding to the input range of the FFT unit 32. The phase The calculation unit 57 and the timing determination unit 58 constitute the timing determination means c [Equation 5]
(ば θζ > 0) (If θ ζ > 0)
 2π
^ ^FFT  ^ ^ FFT
FFT  FFT
1 FFT + ^ 7 X ( θζ < 0) 1 FFT + ^ 7 X (θ ζ <0)
 2π
•••(6) ••• (6)
[0048] 上記 ΔΤ に基づいて受信タイミングを調整することにより、受信機は、より正確な  [0048] By adjusting the reception timing based on the above ΔΤ, the receiver is more accurate.
FFT  FFT
タイミングでデータを復調することができる。  Data can be demodulated at the timing.
[0049] なお、本実施の形態においては、隣接サブキャリア間で Y'を求め、その総和値を用 いるようにしている力 任意のサブキャリア間で Y'を求めるようにしてもよい。また一部 のサブキャリアのみを用いるようにしてもよい。ただし、任意のサブキャリア間で Y'を求 める場合には、そのサブキャリア間の周波数間隔に応じて Y'の位相を 1サブキャリア 間の周波数間隔での位相回転に相当する値として力も総和値 Ζを算出するなどの補 正が必要である。  [0049] In the present embodiment, Y 'may be obtained between adjacent subcarriers, and the sum value may be used. Y' may be obtained between arbitrary subcarriers. Only some of the subcarriers may be used. However, when Y ′ is obtained between arbitrary subcarriers, the phase of Y ′ is set to a value corresponding to the phase rotation at the frequency interval between one subcarrier according to the frequency interval between the subcarriers. Correction such as calculating the total value 算出 is required.
[0050] このように、本実施の形態においては、送信側は、あら力じめ定めた複数の周波数 に、それぞれあらカゝじめ定めプリアンブルパターンを割り当てたものをプリアンブル信 号として送信する。一方、受信側では、プリアンブル信号受信時も、データ復調時と 同様に FFTを用いて周波数毎に情報を分離し、それらをプリアンブルパターンの複 素共役値とそれぞれ乗算して得られた結果を用いて、受信したプリアンブル信号とプ リアンブルパターンとの類似性を判定することによりキャリア検出およびタイミング判定 を行うようにした。これにより、従来使用していた電力のみでキャリア検出等を行う場 合と比較して、誤検出を行う可能性を小さくすることができる。  [0050] Thus, in the present embodiment, the transmission side transmits, as preamble signals, signals that have been assigned a predetermined preamble pattern to a plurality of predetermined frequencies. On the other hand, at the time of receiving the preamble signal, on the other hand, when the preamble signal is received, information is separated for each frequency using the FFT, and the result obtained by multiplying them with the complex conjugate value of the preamble pattern is used. Thus, carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern. As a result, the possibility of erroneous detection can be reduced compared to the case where carrier detection or the like is performed using only power that has been conventionally used.
[0051] また、上記 FFT部 32ゃ複素乗算器 53は、一般的な OFDM受信器がデータ受信 のために通常備えている回路であり、キャリア検出とデータの復調は同時に行う必要 がないので、同じ回路をキャリア検出に用いることが可能である。すなわち、従来の時 間領域の相関によるキャリア検出と比較して、少ない回路規模で上述した受信機を 実現することができる。  [0051] Also, the FFT unit 32 and the complex multiplier 53 are circuits that a general OFDM receiver normally includes for data reception, and it is not necessary to perform carrier detection and data demodulation at the same time. The same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
[0052] さらに、プリアンブル信号生成時の IFFT部 12の出力範囲と受信時の FFT部 32の 入力範囲が一致しない場合の FFT出力の位相回転に着目し、サブキャリア間の位 相偏差量力 FFT部 32への入力範囲の時間内のどのタイミングにおいてプリアンプ ル信号の先頭を受信したかを知ることができる。 [0052] Furthermore, the output range of the IFFT unit 12 at the time of preamble signal generation and the FFT unit 32 at the time of reception Pay attention to the phase rotation of the FFT output when the input ranges do not match, and know the timing of the preamplifier signal at which timing within the input range to the FFT unit 32. Can do.
[0053] 実施の形態 3.  [0053] Embodiment 3.
つづいて、実施の形態 3の信号検出装置について説明する。以上の実施の形態は 、繰り返しのな 、予め定めた既知のプリアンブルパターンから生成されたプリアンプ ル信号を使用する場合について説明したものであるが、本実施の形態においては、 プリアンブルパターンを複数回連続して繰り返したものに基づいて生成されたブリア ンブル信号を使用する場合のキャリア検出およびタイミング判定について説明する。  Next, the signal detection apparatus according to the third embodiment will be described. The above embodiment describes the case where a preamble signal generated from a predetermined known preamble pattern is used without repetition. In this embodiment, the preamble pattern is continuously repeated a plurality of times. The carrier detection and timing determination in the case where the blemble signal generated based on the repetition is used will be described.
[0054] 本実施の形態の送信機は、上述した実施の形態 1の送信機と同様の構成(図 1参 照)をとり、プリアンブル信号の生成動作のみが実施の形態 1と異なる。また、受信機 も、実施の形態 1の受信機と同様の構成(図 2参照)をとり、キャリア判定動作のみが 実施の形態 1と異なる。なお、受信機が備えるキャリア検出タイミング判定部の構成を 実施の形態 2と同様としてもよい。以下、送信機および受信機の動作について、実施 の形態 1と異なる部分を中心に説明する。  The transmitter of the present embodiment has the same configuration as the transmitter of the first embodiment described above (see FIG. 1), and only the preamble signal generation operation is different from the first embodiment. The receiver also has the same configuration as that of the receiver of the first embodiment (see FIG. 2), and only the carrier determination operation is different from that of the first embodiment. The configuration of the carrier detection timing determination unit provided in the receiver may be the same as that in the second embodiment. Hereinafter, the operations of the transmitter and the receiver will be described focusing on the differences from the first embodiment.
[0055] 送信機は、プリアンブル信号の送信動作において、同じプリアンブルパターンを複 数回連続して繰り返した信号を生成し、これをプリアンブル信号として送信する点が 実施の形態 1の送信機と異なる。なお、プリアンブルパターンの繰り返し回数を L回と する。これ以外の動作は、実施の形態 1と同様である。  [0055] The transmitter differs from the transmitter of Embodiment 1 in that, in the preamble signal transmission operation, a signal is generated by repeatedly repeating the same preamble pattern a plurality of times and transmitted as a preamble signal. The number of preamble pattern repetitions is L. Other operations are the same as those in the first embodiment.
[0056] 一方、受信機において、キャリア検出判定部 56は、 1回だけしきい値を超えた場合 に直ちにキャリア検出と判定するのではなぐ M回(M≤L)の連続した FFT処理結果 による Z (複素総和器 54の出力)の絶対値 (または絶対値の 2乗値)のうち、 N回 (N≤ M)しきい値を超えた場合にキャリア検出と判定する。  [0056] On the other hand, in the receiver, the carrier detection determination unit 56 does not immediately determine carrier detection when the threshold value is exceeded only once, but based on M (M≤L) consecutive FFT processing results. If the absolute value (or the square value of the absolute value) of Z (the output of the complex summer 54) exceeds the threshold value N times (N≤M), it is determined that the carrier is detected.
[0057] なお、受信機が備えるキャリア検出タイミング判定部の構成が、実施の形態 2で示し た受信機と同様の場合、タイミング判定部 58は、 M回の連続した FFT処理結果のう ち、キャリア検出判定部 56がしきい値を超えたと判断した場合の Zの位相 Θ の平均  [0057] When the configuration of the carrier detection timing determination unit provided in the receiver is the same as that of the receiver described in Embodiment 2, the timing determination unit 58 includes the M consecutive FFT processing results, Average of phase Θ of Z when carrier detection determination unit 56 determines that the threshold value is exceeded
Z  Z
値を求める。そして、キャリア検出判定部 56がキャリア検出と判定した場合には、 Θ  Find the value. Then, when the carrier detection determination unit 56 determines that carrier detection, Θ
Z  Z
の平均値を用いて ΔΤ を算出し、受信タイミングを判定する。または、タイミング判 定部 58は、キャリア検出判定部 56がしきい値を超えたと判断した場合の Zの位相 Θ ΔΤ is calculated using the average value of and the reception timing is determined. Or timing The determination unit 58 determines the phase of Z when the carrier detection determination unit 56 determines that the threshold value has been exceeded.
Z  Z
から ΔΤ を求め、さらに ΔΤ の平均値を求める。そして、キャリア検出判定部 56 From this, ΔΤ is obtained, and the average value of ΔΤ is obtained. The carrier detection determination unit 56
FFT FFT FFT FFT
がキャリア検出と判定した場合には、 ΔΤ の平均値を用いて受信タイミングを判定  Determines the carrier timing, the reception timing is determined using the average value of Δ 判定
FFT  FFT
するようにしてちょい。  Please do it.
[0058] このように、本実施の形態においては、送信側は、あら力じめ定めた複数の周波数 に、それぞれあらかじめ定めたプリアンブルパターンを割り当てて複数回連続送信し たものをプリアンブル信号として使用する。一方、受信側では、プリアンブル信号受 信時も、データの復調と同様に FFTを用いて周波数毎に情報を分離し、それらをプリ アンブルパターンの複素共役値と乗算して得られた結果を用いて、受信したプリアン ブル信号とプリアンブルパターンとの類似性を複数回判定することによりキャリア検出 およびタイミング判定を行うようにした。これにより、従来使用していた電力のみでキヤ リア検出を行う場合や、実施の形態 1、 2において示した 1回のみの判定結果に基づ いてキャリア検出等を行う場合と比較して、誤検出を行う可能性を小さくすることがで きる。  As described above, in the present embodiment, the transmitting side uses a signal that is assigned a predetermined preamble pattern to a plurality of predetermined frequencies and continuously transmitted a plurality of times as a preamble signal. To do. On the other hand, at the time of receiving a preamble signal, on the other hand, the information obtained by separating the information for each frequency using the FFT and multiplying it by the complex conjugate value of the preamble pattern is used, as in demodulating data. Thus, carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern multiple times. As a result, compared to the case where carrier detection is performed using only power that has been used in the past, or the case where carrier detection is performed based on the determination result only once shown in the first and second embodiments, the error is detected. The possibility of performing detection can be reduced.
[0059] また、上記 FFT部 32ゃ複素乗算器 53は、一般的な OFDM受信器がデータ受信 のために通常備えている回路であり、キャリア検出とデータの復調は同時に行う必要 がないので、同じ回路をキャリア検出に用いることが可能である。すなわち、従来の時 間領域の相関によるキャリア検出と比較して、少ない回路規模で上述した受信機を 実現することができる。  [0059] Also, the FFT unit 32 and the complex multiplier 53 are circuits that a general OFDM receiver normally includes for data reception, and it is not necessary to perform carrier detection and data demodulation at the same time. The same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
[0060] さらに、キャリア検出タイミング判定部 50の構成が図 4のような構成の場合 (受信機 の構成が実施の形態 2の受信機と同様の場合)には、プリアンブル信号生成時の IF FT部 12の出力範囲と受信時の FFT部 32の入力範囲が一致しない場合の FFT出 力の位相回転に着目し、サブキャリア間の位相偏差量力 FFT部 32への入力範囲 の時間内のどのタイミングにおいてプリアンブル信号の先頭を受信したかを知ること ができる。  [0060] Furthermore, when the configuration of carrier detection timing determination section 50 is as shown in Fig. 4 (when the configuration of the receiver is the same as that of the receiver of the second embodiment), the IF FT at the time of preamble signal generation Pay attention to the phase rotation of the FFT output when the output range of the unit 12 and the input range of the FFT unit 32 at the time of reception do not match, and the phase deviation amount power between subcarriers Any timing within the time of the input range to the FFT unit 32 It is possible to know whether or not the beginning of the preamble signal has been received.
[0061] 実施の形態 4.  [0061] Embodiment 4.
つづいて、実施の形態 4の信号検出装置について説明する。上述した実施の形態 3では、送信機が送信するプリアンブル信号がプリアンブルパターンを複数回連続し て繰り返したものに基づいて生成された場合のキャリア検出およびタイミング判定に ついて説明したが、本実施の形態においては、受信した時間波形を平均化し、それ を用いてキャリア検出を判定する場合について説明する。 Next, the signal detection apparatus according to the fourth embodiment will be described. In Embodiment 3 described above, the preamble signal transmitted by the transmitter continues the preamble pattern a plurality of times. In the present embodiment, the case where the received time waveform is averaged and used to determine the carrier detection is described. To do.
[0062] 本実施の形態の送信機は、上述した実施の形態 1の送信機と同様の構成をとり、プ リアンブル信号の生成動作のみが実施の形態 1と異なる。この送信機は、プリアンプ ル信号の送信動作にお!、て、同じプリアンブルパターンを複数回連続して繰り返した 信号を生成し、これをプリアンブル信号として送信する点が実施の形態 1の送信機と 異なる。なお、プリアンブルパターンの繰り返し回数を L回とする。これ以外の動作は 、実施の形態 1と同様である。  [0062] The transmitter of the present embodiment has the same configuration as that of the transmitter of the first embodiment described above, and only the operation of generating a preamble signal is different from that of the first embodiment. This transmitter is the same as the transmitter of Embodiment 1 in that it generates a signal in which the same preamble pattern is repeated a plurality of times in succession and transmits this as a preamble signal in the preamble signal transmission operation. Different. The number of repetitions of the preamble pattern is L times. Other operations are the same as those in the first embodiment.
[0063] 図 6は、実施の形態 4の受信機の構成例を示す図である。本実施の形態の受信機 は、上述した実施の形態 1の受信機に対して時間信号平均化部 35が追加された構 成をとる。その他の部分については実施の形態 1の受信機と同様であるため、同一の 符号を付してその説明は省略する。これ以降、本実施の形態の受信機を受信機 3bと 記載する。  FIG. 6 is a diagram illustrating a configuration example of a receiver according to the fourth embodiment. The receiver according to the present embodiment has a configuration in which a time signal averaging unit 35 is added to the receiver according to the first embodiment described above. The other parts are the same as those of the receiver of the first embodiment, so the same reference numerals are given and the description thereof is omitted. Henceforth, the receiver of this Embodiment is described as the receiver 3b.
[0064] 図 6に基づいて受信機 3bの動作を説明する。まず、データを受信する場合、受信 機 3bは、実施の形態 1の受信機 3と同様の動作を行う。すなわち、受信信号 34の入 力があると、 AZD変換部 33は、それをデジタル時間波形情報に変換し、変換後の 受信信号を FFT部 32へ入力する。以降の動作は実施の形態 1にお!/ヽて示した動作 と同様である。  [0064] The operation of the receiver 3b will be described with reference to FIG. First, when receiving data, the receiver 3b performs the same operation as the receiver 3 of the first embodiment. That is, when there is an input of the received signal 34, the AZD conversion unit 33 converts it into digital time waveform information and inputs the converted received signal to the FFT unit 32. Subsequent operations are the same as those shown in the first embodiment.
[0065] つぎに、プリアンブル信号を受信し、キャリア検出およびタイミング判定を行う場合 には、時間信号平均化部 35は、 AZD変換部 33部の出力を FFT部 32の入力範囲 分の時間毎に直前の 1回 (1≤L)分の時間波形を平均化し、平均化後の AZD変換部 33部出力を FFT部 32に対して出力する。  [0065] Next, when receiving the preamble signal and performing carrier detection and timing determination, the time signal averaging unit 35 outputs the output of the AZD conversion unit 33 unit every time corresponding to the input range of the FFT unit 32. The previous time waveform (1≤L) is averaged, and the averaged AZD conversion unit 33 unit output is output to the FFT unit 32.
[0066] 時刻 tにお 、て AZD変換部 33から得られる FFT部 32の入力範囲分の時間 T  [0066] At time t, time T for the input range of FFT unit 32 obtained from AZD conversion unit 33
FFT  FFT
分のデジタル時間波形情報を S(t)として次式(7)のように表した場合、時刻 tにおける 時間信号平均化部 35からの出力 S (t)は次式 (8)で表すことができる。  If the digital time waveform information of minutes is expressed as S (t) as shown in the following equation (7), the output S (t) from the time signal averaging unit 35 at time t can be expressed as the following equation (8). it can.
avr  avr
[0067] [数 6]  [0067] [Equation 6]
S(t) = {s0 (t),S l (t), s2 (t), - - - , sTFFT (t)} •(7) S (t) = {s 0 (t), S l (t), s 2 (t), --- , s TFFT (t)} • (7)
[0068] [数 7]  [0068] [Equation 7]
Figure imgf000019_0001
Figure imgf000019_0001
•••(8)  ••• (8)
[0069] FFT部 32は、上式 (8)で表される平均化された時間波形 S (t)を周波数領域情報  [0069] The FFT unit 32 converts the averaged time waveform S (t) expressed by the above equation (8) into frequency domain information.
avr  avr
に変換し、キャリア検出タイミング判定部 50に対して出力する。以降の動作は実施の 形態 1において示した動作と同様である。  And output to the carrier detection timing determination unit 50. Subsequent operations are the same as those described in the first embodiment.
[0070] なお、本実施の形態にお!、ては、実施の形態 1の受信機に対して時間信号平均化 部 35を追加した構成として説明を行ったが、これに限らず、実施の形態 2の受信機 に対して時間信号平均化部 35を追加した構成としてもよい。また、キャリア検出およ びタイミング判定を行うにあたり、実施の形態 3において説明したような、複数回の判 定結果に基づ 、てキャリア検出等を行うようにしてもょ 、。  [0070] Although the present embodiment has been described as a configuration in which the time signal averaging unit 35 is added to the receiver of the first embodiment, the present invention is not limited to this. A configuration in which a time signal averaging unit 35 is added to the receiver of form 2 may be adopted. In carrier detection and timing determination, carrier detection may be performed based on a plurality of determination results as described in the third embodiment.
[0071] このように、本実施の形態においては、送信側は、あら力じめ定めた複数の周波数 に、それぞれあらかじめ定めたプリアンブルパターンを割り当てて複数回連続送信し たものをプリアンブル信号として使用する。一方、受信側では、プリアンブル信号受 信の場合、受信した時間波形を平均化した後、データ復調時と同様に FFTを用いて 周波数毎に情報を分離し、それらをプリアンブルパターンの複素共役値とそれぞれ 乗算して得られた結果を用いて、受信したプリアンブル信号とプリアンブルパターンと の類似性を判定することによりキャリア検出およびタイミング判定を行うようにした。こ れにより、従来使用していた電力のみでキャリア検出を行う場合や、上述した実施の 形態において示した、時間波形を平均化せずにキャリア検出等を行う場合と比較し て、誤検出を行う可能性を小さくすることができる。  [0071] Thus, in this embodiment, the transmission side assigns a predetermined preamble pattern to each of a plurality of predetermined frequencies and uses a signal that is continuously transmitted a plurality of times as a preamble signal. To do. On the other hand, in the case of preamble signal reception, after the received time waveform is averaged, the information is separated for each frequency using the FFT as in the case of data demodulation, and the information is separated from the complex conjugate value of the preamble pattern. Carrier detection and timing determination are performed by determining the similarity between the received preamble signal and the preamble pattern using the results obtained by multiplying each. As a result, compared to the case where carrier detection is performed using only power that has been used in the past or the case where carrier detection is performed without averaging the time waveform described in the above-described embodiment, erroneous detection is performed. The possibility of doing it can be reduced.
[0072] また、上記 FFT部 32ゃ複素乗算器 53は、一般的な OFDM受信器がデータ受信 のために通常備えている回路であり、キャリア検出とデータの復調は同時に行う必要 がないので、同じ回路をキャリア検出に用いることが可能である。すなわち、従来の時 間領域の相関によるキャリア検出と比較して、少ない回路規模で上述した受信機を 実現することができる。 [0072] Also, the FFT unit 32 and the complex multiplier 53 are circuits that a general OFDM receiver normally includes for data reception, and it is not necessary to perform carrier detection and data demodulation at the same time. The same circuit can be used for carrier detection. In other words, compared with the conventional carrier detection based on correlation in the time domain, the above-described receiver can be realized with a small circuit scale. Can be realized.
[0073] さらに、キャリア検出タイミング判定部 50の構成が図 4のような構成の場合 (受信機 の構成が実施の形態 2の受信機と同様の場合)には、プリアンブル信号生成時の IF FT部 12の出力範囲と受信時の FFT部 32の入力範囲が一致しない場合の FFT出 力の位相回転に着目し、サブキャリア間の位相偏差量力 FFT部 32への入力範囲 の時間内のどのタイミングにおいてプリアンブル信号の先頭を受信したかを知ること ができる。  [0073] Furthermore, when the configuration of carrier detection timing determination section 50 is as shown in Fig. 4 (when the configuration of the receiver is the same as that of the receiver of the second embodiment), the IF FT at the time of preamble signal generation Pay attention to the phase rotation of the FFT output when the output range of the unit 12 and the input range of the FFT unit 32 at the time of reception do not match, and the phase deviation amount power between subcarriers Any timing within the time of the input range to the FFT unit 32 It is possible to know whether or not the beginning of the preamble signal has been received.
[0074] 実施の形態 5.  [0074] Embodiment 5.
つづいて、実施の形態 5の信号検出装置について説明する。上述した実施の形態 4では、受信した時間波形を平均化してキャリア検出の判定を行うようにしていたが、 本実施の形態においては、 FFT処理後の周波数情報を平均化し、それを用いてキ ャリア検出の判定を行う場合について説明する。  Next, the signal detection apparatus according to the fifth embodiment will be described. In Embodiment 4 described above, the received time waveform is averaged to determine carrier detection. However, in this embodiment, frequency information after FFT processing is averaged and used to perform keying. A case where determination of carrier detection is performed will be described.
[0075] 本実施の形態の送信機は、上述した実施の形態 1の送信機と同様の構成をとり、プ リアンブル信号の生成動作のみが実施の形態 1と異なる。この送信機は、プリアンプ ル信号の送信動作にお!、て、同じプリアンブルパターンを複数回連続して繰り返した 信号を生成し、これをプリアンブル信号として送信する点が実施の形態 1の送信機と 異なる。なお、プリアンブルパターンの繰り返し回数を L回とする。これ以外の動作は 、実施の形態 1と同様である。  The transmitter of the present embodiment has the same configuration as that of the transmitter of the first embodiment described above, and only the operation for generating a preamble signal is different from that of the first embodiment. This transmitter is the same as the transmitter of Embodiment 1 in that it generates a signal in which the same preamble pattern is repeated a plurality of times in succession and transmits this as a preamble signal in the preamble signal transmission operation. Different. The number of repetitions of the preamble pattern is L times. Other operations are the same as those in the first embodiment.
[0076] 図 7は、実施の形態 5の受信機の構成例を示す図である。本実施の形態の受信機 は、上述した実施の形態 1の受信機に対して周波数情報平均化部 36が追加された 構成をとる。その他の部分については実施の形態 1の受信機と同様であるため、同 一の符号を付してその説明は省略する。これ以降、本実施の形態の受信機を受信機 3cと記載する。  [0076] FIG. 7 is a diagram illustrating a configuration example of a receiver in the fifth embodiment. The receiver of the present embodiment has a configuration in which a frequency information averaging unit 36 is added to the receiver of the first embodiment described above. The other parts are the same as those of the receiver of the first embodiment, so the same reference numerals are given and the description thereof is omitted. Henceforth, the receiver of this Embodiment is described as the receiver 3c.
[0077] 図 7に基づいて受信機 3cの動作を説明する。まず、データを受信する場合、受信 機 3cは、実施の形態 1の受信機 3と同様の動作を行う。  [0077] The operation of the receiver 3c will be described with reference to FIG. First, when receiving data, the receiver 3c performs the same operation as the receiver 3 of the first embodiment.
[0078] つぎに、プリアンブル信号を受信し、キャリア検出およびタイミング判定を行う場合 には、 FFT部 32からの出力であるサブキャリア毎の複素データが周波数情報平均化 部 36へ入力される。周波数情報平均化部 36は、 FFT部 32の出力範囲分の周波数 帯域毎に直前の 1回 (1≤L)分の周波数情報 (複素データ)を平均化し、平均化後の 周波数情報をキャリア検出タイミング判定部 50に対して出力する。 Next, when receiving a preamble signal and performing carrier detection and timing determination, complex data for each subcarrier, which is an output from the FFT unit 32, is input to the frequency information averaging unit 36. The frequency information averaging unit 36 has a frequency for the output range of the FFT unit 32. The frequency information (complex data) of the immediately preceding (1≤L) is averaged for each band, and the averaged frequency information is output to the carrier detection timing determination unit 50.
[0079] 時刻 tにおいて FFT部 32から得られる FFT部 32の出力範囲分の周波数帯域 F 分  [0079] The frequency band F for the output range of FFT unit 32 obtained from FFT unit 32 at time t
FFT  FFT
の周波数情報を D(t)として次式(9)のように表した場合、時刻 tにおける FFT部 32か らの出力 D (t)は次式(10)で表すことができる。  When the frequency information is expressed as D (t) as shown in the following equation (9), the output D (t) from the FFT unit 32 at time t can be expressed as the following equation (10).
avr  avr
[0080] [数 8]  [0080] [Equation 8]
D(t)-(d0(t),d,(t),d2(t),-,dFFFi (t) D (t)-(d 0 (t), d, (t), d 2 (t),-, d FFFi (t)
•••(9) ••• (9)
[0081] [数 9]  [0081] [Equation 9]
1-1 1—】 1-1 1—1  1-1 1—】 1-1 1—1
Xd0(t-iFFFT) — iFFFr) Jd2(t-iFFFT) ∑αΡρρτ (t-iFFFT) i-0 i=0 i-0 i=0 Xd 0 (t-iF FFT ) — iF FFr ) J d 2 (t-iF FFT ) ∑α Ρρρτ (t-iF FFT ) i-0 i = 0 i-0 i = 0
Davr(t): D avr (t):
•••do) ••• do)
[0082] キャリア検出タイミング判定部 50は、上式(10)で表される平均化された周波数情 報 D (t)に基づいてキャリア検出およびタイミング判定を行う。なお、キャリア検出動 avr  The carrier detection timing determination unit 50 performs carrier detection and timing determination based on the averaged frequency information D (t) expressed by the above equation (10). Carrier detection motion avr
作およびタイミング判定動作は、実施の形態 1にお 、て示した動作と同様である。  The operation and timing determination operation are the same as those shown in the first embodiment.
[0083] なお、本実施の形態においては、実施の形態 1の受信機に対して周波数情報平均 化部 36を追加した構成として説明を行ったが、これに限らず、実施の形態 2の受信 機に対して周波数情報平均化部 36を追加した構成としてもよい。また、キャリア検出 およびタイミング判定を行うにあたり、実施の形態 3において説明したような、複数回 の判定結果に基づ 、てキャリア検出等を行うようにしてもょ 、。  In the present embodiment, the frequency information averaging unit 36 is added to the receiver of the first embodiment. However, the present invention is not limited to this, and the reception of the second embodiment is performed. A frequency information averaging unit 36 may be added to the machine. Also, when performing carrier detection and timing determination, carrier detection or the like may be performed based on a plurality of determination results as described in the third embodiment.
[0084] このように、本実施の形態においては、送信側は、あら力じめ定めた複数の周波数 に、それぞれあらかじめ定めたプリアンブルパターンを割り当てて複数回連続送信し たものをプリアンブル信号として使用する。一方、受信側では、プリアンブル信号受 信の場合、 FFTを用いて周波数毎に情報を分離し、さらに分離後の情報をそれぞれ 平均化し、平均化後の情報をプリアンブルパターンの複素共役値とそれぞれ乗算し て得られた結果を用いて、受信したプリアンブル信号とプリアンブルパターンとの類 似性を判定することによりキャリア検出およびタイミング判定を行うようにした。これに より、従来使用していた電力のみでキャリア検出を行う場合や、上述した実施の形態 において示した、周波数情報を平均化せずにキャリア検出等を行う場合と比較して、 誤検出を行う可能性を小さくすることができる。 [0084] Thus, in the present embodiment, the transmission side assigns a predetermined preamble pattern to each of a plurality of predetermined frequencies and uses a signal that is continuously transmitted a plurality of times as a preamble signal. To do. On the other hand, in the case of preamble signal reception, information is separated for each frequency using an FFT, the information after separation is averaged, and the averaged information is multiplied by the complex conjugate value of the preamble pattern. Using the results obtained in this way, the received preamble signal and preamble pattern Carrier detection and timing determination are performed by determining similarity. As a result, compared to the case where carrier detection is performed using only power that has been used in the past or the case where carrier detection is performed without averaging frequency information as described in the above-described embodiment, erroneous detection is performed. The possibility of doing it can be reduced.
[0085] また、上記 FFT部 32ゃ複素乗算器 53は、一般的な OFDM受信器がデータ受信 のために通常備えている回路であり、キャリア検出とデータの復調は同時に行う必要 がないので、同じ回路をキャリア検出に用いることが可能である。すなわち、従来の時 間領域の相関によるキャリア検出と比較して、少ない回路規模で上述した受信機を 実現することができる。  Further, the FFT unit 32 is a complex multiplier 53, which is a circuit normally provided for data reception by a general OFDM receiver, and it is not necessary to perform carrier detection and data demodulation at the same time. The same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
[0086] さらに、キャリア検出タイミング判定部 50の構成が図 4のような構成の場合 (受信機 の構成が実施の形態 2の受信機と同様の場合)には、プリアンブル信号生成時の IF FT部 12の出力範囲と受信時の FFT部 32の入力範囲が一致しない場合の FFT出 力の位相回転に着目し、サブキャリア間の位相偏差量力 FFT部 32への入力範囲 の時間内のどのタイミングにおいてプリアンブル信号の先頭を受信したかを知ること ができる。  [0086] Furthermore, when the configuration of carrier detection timing determination section 50 is as shown in Fig. 4 (when the configuration of the receiver is the same as that of the receiver of the second embodiment), the IF FT at the time of preamble signal generation Pay attention to the phase rotation of the FFT output when the output range of the unit 12 and the input range of the FFT unit 32 at the time of reception do not match, and the phase deviation amount power between subcarriers Any timing within the time of the input range to the FFT unit 32 It is possible to know whether or not the beginning of the preamble signal has been received.
[0087] 実施の形態 6.  [0087] Embodiment 6.
つづいて、実施の形態 6の信号検出装置について説明する。上述した実施の形態 4および 5では、それぞれ、受信した時間波形および FFT後の周波数情報を平均化 してキャリア検出の判定を行うようにしていた力 本実施の形態においては、キャリア 検出の直前およびタイミング判定を行う直前の情報を平均化し、それを用いてキヤリ ァ検出およびタイミング判定を行う場合について説明する。  Next, the signal detection apparatus according to the sixth embodiment will be described. In Embodiments 4 and 5 described above, the received time waveform and the frequency information after FFT are averaged to determine carrier detection. In this embodiment, immediately before carrier detection and A case will be described in which information immediately before timing determination is averaged and carrier detection and timing determination are performed using the averaged information.
[0088] 本実施の形態の送信機は、上述した実施の形態 1の送信機と同様の構成をとり、プ リアンブル信号の生成動作のみが実施の形態 1と異なる。この送信機は、プリアンプ ル信号の送信動作にお!、て、同じプリアンブルパターンを複数回連続して繰り返した 信号を生成し、これをプリアンブル信号として送信する点が実施の形態 1の送信機と 異なる。なお、プリアンブルパターンの繰り返し回数を L回とする。これ以外の動作は 、実施の形態 1と同様である。  The transmitter of the present embodiment has the same configuration as that of the transmitter of the first embodiment described above, and only the preamble signal generation operation is different from that of the first embodiment. This transmitter is the same as the transmitter of Embodiment 1 in that it generates a signal in which the same preamble pattern is repeated a plurality of times in succession and transmits this as a preamble signal in the preamble signal transmission operation. Different. The number of repetitions of the preamble pattern is L times. Other operations are the same as those in the first embodiment.
[0089] また、受信機の構成は、実施の形態 1の受信機と同様であるが、キャリア検出タイミ ング判定部の詳細構成が一部異なる。そのため、本実施の形態においては、キャリア 検出タイミング判定部以外の部分については、その説明を省略し、タイミング検出判 定部の動作についてのみ説明を行う。 [0089] The configuration of the receiver is the same as that of the receiver of Embodiment 1, but the carrier detection timing is The detailed configuration of the ring determination unit is partially different. For this reason, in the present embodiment, description of parts other than the carrier detection timing determination unit will be omitted, and only the operation of the timing detection determination unit will be described.
[0090] 図 8は、実施の形態 6のキャリア検出タイミング判定部の構成例を示す図であり、実 施の形態 1に記載のキャリア検出タイミング判定部 50 (図 3参照)に対して、キャリア検 出の直前の情報を平均化するための時間平均化部 59を追加したものである。なお、 後述する動作説明において、この構成のキャリア検出タイミング判定部をキャリア検 出タイミング判定部 50dと記載する。また、時間平均化部 59以外の部分については、 キャリア検出タイミング判定部 50と同一の符号を付してその説明を省略する。  FIG. 8 is a diagram illustrating a configuration example of the carrier detection timing determination unit according to the sixth embodiment. Compared to the carrier detection timing determination unit 50 (see FIG. 3) described in the first embodiment, FIG. A time averaging unit 59 is added to average the information immediately before detection. In the description of operations to be described later, the carrier detection timing determination unit having this configuration is referred to as a carrier detection timing determination unit 50d. Further, portions other than the time averaging unit 59 are denoted by the same reference numerals as those of the carrier detection timing determination unit 50, and description thereof is omitted.
[0091] また、図 9は、実施の形態 6のキャリア検出タイミング判定部の別の構成例を示す図 であり、実施の形態 2に記載のキャリア検出タイミング判定部 50a (図 4参照)に対して 、キャリア検出の直前の情報を平均化するための時間平均化部 59を追加したもので ある。なお、後述する動作説明において、この構成のキャリア検出タイミング判定部を キャリア検出タイミング判定部 50eと記載する。また、時間平均化部 59以外の部分に ついては、キャリア検出タイミング判定部 50と同一の符号を付してその説明を省略す る。  [0091] FIG. 9 is a diagram illustrating another configuration example of the carrier detection timing determination unit according to the sixth embodiment. FIG. 9 illustrates the carrier detection timing determination unit 50a according to the second embodiment (see FIG. 4). Thus, a time averaging unit 59 for averaging information immediately before carrier detection is added. In the description of operations to be described later, the carrier detection timing determination unit having this configuration is referred to as a carrier detection timing determination unit 50e. Further, portions other than the time averaging unit 59 are denoted by the same reference numerals as those of the carrier detection timing determination unit 50, and description thereof is omitted.
[0092] キャリア検出タイミング判定部 50dおよび 50eの 、ずれにお 、ても、加算結果平均 化手段に相当する時間平均化部 59は、複素総和器 54の出力を直前の 1回 (1≤L)分 の周波数情報を平均化して出力する。なお、時刻 tにおいて得られる総和値を Z(t)と し、 FFT部 32の入力範囲分の時間を T としたとき、時刻 tで時間平均化部 59から  [0092] Even if the carrier detection timing determination units 50d and 50e are shifted, the time averaging unit 59 corresponding to the addition result averaging unit outputs the output of the complex summation unit 54 once (1≤L ) Minute frequency information is averaged and output. If the total value obtained at time t is Z (t) and the time for the input range of the FFT unit 32 is T, the time averaging unit 59 at time t
FFT  FFT
出力される情報 Z (t)は次式(11)で表すことができる。  The output information Z (t) can be expressed by the following equation (11).
avr  avr
[0093] [数 10]  [0093] [Equation 10]
Zavr (t Z(t - iTFFT) Z avr (t Z (t-iT FFT )
i=0  i = 0
•••(11) ••• (11)
[0094] キャリア検出タイミング判定部 50dおよび 50eのいずれにおいても、絶対値算出部 5 5および位相算出部 57が時間平均化部 59からの出力に基づいて、上述した実施の 形態 1または 2において示した処理を実行する。そして、キャリア検出部 56,タイミン グ判定部 58は、それぞれ、絶対値算出部 55からの出力,位相算出部 57からの出力 に基づ!/、て、上述した実施の形態 1または 2にお 、て示した処理を実行する。 [0094] In both carrier detection timing determination units 50d and 50e, absolute value calculation unit 55 and phase calculation unit 57 show the above-described embodiment 1 or 2 based on the output from time averaging unit 59. Execute the process. And carrier detection unit 56, Taimin Based on the output from the absolute value calculation unit 55 and the output from the phase calculation unit 57, the determination unit 58 executes the process shown in the first or second embodiment described above, respectively. .
[0095] なお、本実施の形態においては、実施の形態 1または 2の受信機が備えるキャリア 検出タイミング判定部に対して時間平均化部 59を追加することとした力 これに限ら ず、実施の形態 3に示した動作を行うキャリア検出タイミング判定部に対して時間平 均化部 59を追加するようにしてもょ ヽ。  [0095] In the present embodiment, the power of adding time averaging section 59 to the carrier detection timing determining section provided in the receiver of Embodiment 1 or 2 is not limited to this. A time averaging unit 59 may be added to the carrier detection timing determination unit that performs the operation shown in form 3.
[0096] このように、本実施の形態においては、送信側は、あら力じめ定めた複数の周波数 に、それぞれあらかじめ定めたプリアンブルパターンを割り当てて複数回連続送信し たものをプリアンブル信号として使用する。一方、受信側では、プリアンブル信号受 信の場合、キャリア検出およびタイミング検出を行う際に使用する情報を時間平均化 し、その結果を使用してキャリア検出およびタイミング判定を行うようにした。これによ り、従来使用していた電力のみでキャリア検出を行う場合や、上述した実施の形態に おいて示した、キャリア検出およびタイミング検出を行う際に使用する情報を平均化 せずにキャリア検出等を行う場合と比較して、誤検出を行う可能性を小さくすることが できる。  [0096] As described above, in the present embodiment, the transmitting side assigns a predetermined preamble pattern to each of a plurality of predetermined frequencies, and uses a signal that is continuously transmitted a plurality of times as a preamble signal. To do. On the other hand, in the case of preamble signal reception, information used for carrier detection and timing detection is time-averaged, and the results are used to perform carrier detection and timing determination. As a result, the carrier detection is performed without averaging the information used for carrier detection and timing detection shown in the above-described embodiment when carrier detection is performed using only power that has been conventionally used. The possibility of erroneous detection can be reduced compared to the case where detection or the like is performed.
[0097] また、上記 FFT部 32ゃ複素乗算器 53は、一般的な OFDM受信器がデータ受信 のために通常備えている回路であり、キャリア検出とデータの復調は同時に行う必要 がないので、同じ回路をキャリア検出に用いることが可能である。すなわち、従来の時 間領域の相関によるキャリア検出と比較して、少ない回路規模で上述した受信機を 実現することができる。  [0097] Further, the FFT unit 32 is a complex multiplier 53, which is a circuit that is generally provided for data reception by a general OFDM receiver, and it is not necessary to perform carrier detection and data demodulation at the same time. The same circuit can be used for carrier detection. That is, the above-described receiver can be realized with a small circuit scale as compared with the conventional carrier detection based on correlation in the time domain.
[0098] さらに、キャリア検出タイミング判定部 50eを備えた受信機では、プリアンブル信号 生成時の IFFT部 12の出力範囲と受信時の FFT部 32の入力範囲が一致しない場 合の FFT出力の位相回転に着目し、サブキャリア間の位相偏差量力も FFT部 32へ の入力範囲の時間内のどのタイミングにおいてプリアンブル信号の先頭を受信した カゝを知ることができる。  [0098] Furthermore, in a receiver equipped with carrier detection timing determination unit 50e, the phase rotation of the FFT output when the output range of IFFT unit 12 at the time of preamble signal generation and the input range of FFT unit 32 at the time of reception do not match With regard to the power of phase deviation between subcarriers, it is possible to know the key that received the beginning of the preamble signal at any timing within the input range to the FFT unit 32.
産業上の利用可能性  Industrial applicability
[0099] 以上のように、本発明に力かる信号検出装置は、通信システムに有用であり、特に 、既知信号に基づいて、所望信号およびシンボルタイミングを少ない回路規模で高 精度に検出する通信装置が備える受信機に適している。 [0099] As described above, the signal detection apparatus according to the present invention is useful for a communication system, and in particular, based on a known signal, a desired signal and symbol timing can be increased with a small circuit scale. It is suitable for a receiver provided in a communication device that detects accurately.

Claims

請求の範囲 The scope of the claims
[1] 受信信号の中から OFDM (Orthogonal Frequency Division Multiplexing)方式で 変調された所望信号を検出するための信号検出装置であって、  [1] A signal detection device for detecting a desired signal modulated by an OFDM (Orthogonal Frequency Division Multiplexing) method from received signals,
前記受信信号をキャリア毎の周波数領域情報 (第 1の周波数領域信号)に変換する 信号変換手段と、  A signal conversion means for converting the received signal into frequency domain information (first frequency domain signal) for each carrier;
所定の既知情報が含まれかつ周波数および初期位相が異なる、複数のキャリアの 信号が多重化された信号に基づ 、て、キャリア毎の周波数領域情報 (第 2の周波数 領域情報)を生成する既知周波数情報生成手段と、  Known to generate frequency domain information (second frequency domain information) for each carrier on the basis of a signal in which signals of a plurality of carriers that include predetermined known information and have different frequencies and initial phases are multiplexed. Frequency information generating means;
前記既知周波数情報生成手段から出力された第 2の周波数領域情報の複素共役 をキャリア毎に生成する複素共役生成手段と、  Complex conjugate generating means for generating for each carrier a complex conjugate of the second frequency domain information output from the known frequency information generating means;
前記キャリア毎の第 1の周波数領域信号と、前記複素共役生成手段により生成され たキャリア毎の複素共役と、を同一の周波数領域同士で乗算する乗算手段と、 前記乗算手段による乗算出力の一部または全部を加算する加算手段と、 前記加算結果の絶対値または当該加算結果の 2乗値を算出し、当該算出結果お よび予め規定された所定のしきい値、を用いて所望信号の検出判定を行う信号検出 手段と、  Multiplication means for multiplying the first frequency domain signal for each carrier by the complex conjugate for each carrier generated by the complex conjugate generation means in the same frequency domain, and a part of the multiplication output by the multiplication means Alternatively, an addition means for adding all together, and an absolute value of the addition result or a square value of the addition result are calculated, and detection determination of a desired signal is performed using the calculation result and a predetermined threshold value defined in advance. Signal detection means for performing
を備えることを特徴とする信号検出装置。  A signal detection apparatus comprising:
[2] 前記乗算手段は、 [2] The multiplication means includes
前記乗算結果の中から 2つ以上の乗算結果を選択して、当該選択した乗算結果の 複素共役を生成し、当該生成した各複素共役に対して、一定間隔だけ離れた周波 数領域の前記乗算結果をそれぞれ乗算し、  Two or more multiplication results are selected from the multiplication results, and complex conjugates of the selected multiplication results are generated. The multiplications in the frequency domain separated by a fixed interval are generated for the generated complex conjugates. Multiply each result,
前記加算手段は、当該乗算結果の一部または全部を加算することを特徴とする請 求項 1に記載の信号検出装置。  The signal detection apparatus according to claim 1, wherein the adding means adds a part or all of the multiplication results.
[3] さらに、 [3] In addition,
前記信号検出手段が所望信号を検出した場合に、前記加算結果の位相を算出し 、得られた位相に基づ 、て前記所望信号の正確な受信タイミングを判定するタイミン グ判定手段、  A timing determination unit that calculates a phase of the addition result when the signal detection unit detects a desired signal, and determines an accurate reception timing of the desired signal based on the obtained phase;
を備えることを特徴とする請求項 2に記載の信号検出装置。 The signal detection device according to claim 2, further comprising:
[4] 前記所定の既知情報を特定パターンのビット列の繰り返しとした場合、 [4] When the predetermined known information is a repetition of a bit string of a specific pattern,
前記信号検出手段は、前記所望信号の検出判定処理を前記ビット列の繰り返し回 数を超えない範囲で複数回にわたって実行し、当該複数回の実行結果に基づいて 前記所望信号を検出した力どうかを最終的に判断することを特徴とする請求項 1、 2 または 3に記載の信号検出装置。  The signal detection means executes the detection determination process of the desired signal a plurality of times within a range not exceeding the number of repetitions of the bit string, and finally determines whether or not the desired signal is detected based on the execution result of the plurality of times. 4. The signal detection apparatus according to claim 1, 2 or 3, wherein the determination is performed on an as-needed basis.
[5] 前記信号検出手段は、前記複数回の実行結果において所望信号の検出回数が規 定回数以上となった場合に、最終的に所望信号を検出したと判断することを特徴と する請求項 4に記載の信号検出装置。 [5] The signal detection means may determine that the desired signal is finally detected when the number of times of detection of the desired signal is equal to or greater than a predetermined number in the execution result of the plurality of times. 4. The signal detection device according to 4.
[6] さらに、 [6] In addition,
前記所定の既知情報を特定パターンのビット列の繰り返しとした場合、時間領域の 受信信号を、当該ビット列が乗せられた区間毎に、当該ビット列の繰り返し回数を超 えない範囲で複数回にわたって取得し、当該取得した信号を平均化する時間信号 平均化手段、  When the predetermined known information is a repetition of a bit string of a specific pattern, a received signal in a time domain is acquired a plurality of times within a range not exceeding the number of repetitions of the bit string for each section on which the bit string is placed, Time signal averaging means for averaging the acquired signals;
を備え、  With
前記信号変換手段は、前記時間信号平均化手段の出力を周波数領域情報に変 換することを特徴とする請求項 1、 2または 3に記載の信号検出装置。  4. The signal detection device according to claim 1, wherein the signal conversion unit converts the output of the time signal averaging unit into frequency domain information.
[7] さらに、 [7] In addition,
前記所定の既知情報を特定パターンのビット列の繰り返しとした場合、前記信号変 換手段の各出力を、当該ビット列の繰り返し回数を超えない範囲で複数回にわたつ て取得し、当該取得した出力をキャリア毎に平均化する周波数情報平均化手段、 を備え、  When the predetermined known information is a repetition of a bit string of a specific pattern, each output of the signal conversion means is acquired a plurality of times within a range not exceeding the number of repetitions of the bit string, and the acquired output is obtained. Frequency information averaging means for averaging for each carrier,
前記乗算手段は、前記信号変換出力に代えて前記周波数情報平均化手段のキヤ リア毎の平均化出力を使用し、当該各平均化出力と、前記複素共役生成手段により 生成されたキャリア毎の複素共役と、を同一の周波数領域同士で乗算することを特 徴とする請求項 1、 2または 3に記載の信号検出装置。  The multiplication means uses the averaged output for each carrier of the frequency information averaging means instead of the signal conversion output, and each of the averaged outputs and the complex for each carrier generated by the complex conjugate generating means. 4. The signal detection device according to claim 1, wherein the conjugate is multiplied by the same frequency region.
[8] さらに、 [8] In addition,
前記所定の既知情報を特定パターンのビット列の繰り返しとした場合、前記加算手 段の加算出力を当該ビット列の繰り返し回数を超えない範囲で複数回にわたって取 得し、当該取得した加算出力を平均化する加算結果平均化手段、 When the predetermined known information is a repetition of a bit string of a specific pattern, the addition output of the addition means is taken multiple times within a range not exceeding the number of repetitions of the bit string. Addition result averaging means for averaging the obtained addition outputs,
を備え、  With
前記信号検出手段は、前記加算結果平均化手段における平均化結果の絶対値ま たは当該平均化結果の 2乗値を算出し、当該算出結果および前記しき!、値を用 、て 所望信号の検出判定を行うことを特徴とする請求項 1または 2に記載の信号検出装 置。  The signal detecting means calculates an absolute value of the averaged result in the addition result averaging means or a square value of the averaged result, and uses the calculated result and the threshold and the value of the desired signal. 3. The signal detection device according to claim 1, wherein detection determination is performed.
[9] さらに、  [9] In addition,
前記所定の既知情報を特定パターンのビット列の繰り返しとした場合、前記加算手 段の加算出力を当該ビット列の繰り返し回数を超えない範囲で複数回にわたって取 得し、当該取得した加算出力を平均化する加算結果平均化手段、  When the predetermined known information is a repetition of a bit string of a specific pattern, the addition output of the addition means is obtained a plurality of times within a range not exceeding the number of repetitions of the bit string, and the obtained addition output is averaged. Addition result averaging means,
を備え、  With
前記信号検出手段は、前記加算結果平均化手段における平均化結果の絶対値ま たは当該平均化結果の 2乗値を算出し、当該算出結果および前記しき!、値を用 、て 所望信号の検出判定を行い、  The signal detecting means calculates an absolute value of the averaged result in the addition result averaging means or a square value of the averaged result, and uses the calculated result and the threshold and the value of the desired signal. Make a detection decision,
前記タイミング判定手段は、前記加算結果平均化手段における平均化結果の位相 を算出し、得られた位相に基づいて前記所望信号の正確な受信タイミングを判定す ることを特徴とする請求項 3に記載の信号検出装置。  4. The timing determination unit according to claim 3, wherein the phase of the averaging result in the addition result averaging unit is calculated, and an accurate reception timing of the desired signal is determined based on the obtained phase. The signal detection apparatus as described.
[10] 前記所定のしき!、値を、前記所定の既知情報を形成するビットパターン、前記乗算 手段が実行する処理の内容、および前記加算手段が加算対象とする乗算出力の数 、に基づいて決定することを特徴とする請求項 1〜9のいずれか一つに記載の信号 検出装置。 [10] Based on the predetermined threshold !, the value based on the bit pattern forming the predetermined known information, the contents of the processing executed by the multiplication means, and the number of multiplication outputs to be added by the addition means The signal detection device according to claim 1, wherein the signal detection device is determined.
PCT/JP2006/314415 2006-07-20 2006-07-20 Signal detecting apparatus WO2008010283A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008525762A JP4685937B2 (en) 2006-07-20 2006-07-20 Signal detection device
PCT/JP2006/314415 WO2008010283A1 (en) 2006-07-20 2006-07-20 Signal detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/314415 WO2008010283A1 (en) 2006-07-20 2006-07-20 Signal detecting apparatus

Publications (1)

Publication Number Publication Date
WO2008010283A1 true WO2008010283A1 (en) 2008-01-24

Family

ID=38956620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314415 WO2008010283A1 (en) 2006-07-20 2006-07-20 Signal detecting apparatus

Country Status (2)

Country Link
JP (1) JP4685937B2 (en)
WO (1) WO2008010283A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124301A (en) * 2007-11-13 2009-06-04 Sumitomo Electric Ind Ltd Communication device and method of estimating amount of phase rotation
JP2011515925A (en) * 2008-03-12 2011-05-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for investigating whether a given signal has been received in a given set comprising a plurality of OFDMA resource elements
JP2011530869A (en) * 2008-08-08 2011-12-22 インテル コーポレイション Transmission method, radio communication apparatus, and radio communication system
WO2012064030A2 (en) * 2010-11-08 2012-05-18 한국전자통신연구원 Method and device for sensing frequency for ofdm systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755471B2 (en) 2010-04-12 2014-06-17 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for reference signal muting detection in a wireless communication network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256419A (en) * 1990-03-06 1991-11-15 Canon Inc Spread spectrum communication equipment
JP2001177499A (en) * 1999-10-04 2001-06-29 Mitsubishi Electric Corp Communication unit and communication method
JP2005295085A (en) * 2004-03-31 2005-10-20 Nec Corp Carrier detection method, carrier detection program, program recording medium, carrier detection circuit, and receiver
JP2006157421A (en) * 2004-11-29 2006-06-15 Nippon Hoso Kyokai <Nhk> Pilot carrier transmitting and receiving method, transmitter, and receiver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3793463B2 (en) * 2002-01-18 2006-07-05 株式会社メガチップス OFDM sampling error detector, detection method, and OFDM receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256419A (en) * 1990-03-06 1991-11-15 Canon Inc Spread spectrum communication equipment
JP2001177499A (en) * 1999-10-04 2001-06-29 Mitsubishi Electric Corp Communication unit and communication method
JP2005295085A (en) * 2004-03-31 2005-10-20 Nec Corp Carrier detection method, carrier detection program, program recording medium, carrier detection circuit, and receiver
JP2006157421A (en) * 2004-11-29 2006-06-15 Nippon Hoso Kyokai <Nhk> Pilot carrier transmitting and receiving method, transmitter, and receiver

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124301A (en) * 2007-11-13 2009-06-04 Sumitomo Electric Ind Ltd Communication device and method of estimating amount of phase rotation
JP2011515925A (en) * 2008-03-12 2011-05-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for investigating whether a given signal has been received in a given set comprising a plurality of OFDMA resource elements
US8547821B2 (en) 2008-03-12 2013-10-01 Telefonaktiebolaget Lm Ericsson Method and apparatus for investigating whether a given signal is received in a given set of OFDMA resource elements
JP2011530869A (en) * 2008-08-08 2011-12-22 インテル コーポレイション Transmission method, radio communication apparatus, and radio communication system
JP2013214979A (en) * 2008-08-08 2013-10-17 Intel Corp Wireless communication method
WO2012064030A2 (en) * 2010-11-08 2012-05-18 한국전자통신연구원 Method and device for sensing frequency for ofdm systems
WO2012064030A3 (en) * 2010-11-08 2012-07-19 한국전자통신연구원 Method and device for sensing frequency for ofdm systems
US9191259B2 (en) 2010-11-08 2015-11-17 Electronics And Telecommunications Research Institute Method and device for sensing frequency for OFDM systems

Also Published As

Publication number Publication date
JPWO2008010283A1 (en) 2009-12-17
JP4685937B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP4976420B2 (en) Method for improving synchronization and information transmission in a communication system
JP3583366B2 (en) Method and apparatus for combined measurement of starting point of a data block and carrier frequency shift in a multi-carrier transmission system for irregular transmission of a data block
JP2012213151A (en) Multicarrier signal processing using filter bank for synchronization with preamble
JP3513465B2 (en) Wireless communication transmitter and wireless communication receiver
US9548844B2 (en) Communication device and communication system
EP0993161A2 (en) Multicarrier transmission of two data sets
US10735237B2 (en) Apparatus and method for generating and detecting preamble symbol
WO2008010283A1 (en) Signal detecting apparatus
KR102113785B1 (en) Transmitter, receiver and controlling method thereof
CN113315541A (en) Pseudo-random phase sequence spread spectrum modulation method
JP4383445B2 (en) Timing synchronization in M-DPSK channel
US7412012B2 (en) Pattern sequence synchronization
US20080025431A1 (en) Transmitting apparatus and method, receiving apparatus and method
JP4847963B2 (en) Multi-carrier receiver
US10257009B2 (en) Method for multichannel signal search and demodulation and technique to demodulate and detect DBPSK FDMA ultra-narrow band signal
JP3946893B2 (en) Digital communication device
WO2010071161A1 (en) Receiver apparatus and symbol timing determining method
JP4747064B2 (en) Preamble detection device and radio receiver
JP4833024B2 (en) COMMUNICATION SYSTEM, COMMUNICATION DEVICE, AND COMMUNICATION METHOD
KR20000074900A (en) Apparatus for detecting the beginning of frame and method thereof in frequency hopping/orthogonal frequency division multiplexing system
JP2006074276A (en) Method and apparatus for detecting timing
JP3688260B2 (en) Carrier frequency synchronization method and carrier frequency synchronization circuit for OFDM signal demodulator
JPH11284595A (en) Device and method for generating orthogonal frequency division multiple signal, demodulating device, and communication device
JP5988622B2 (en) Method for improving synchronization and information transmission in a communication system
JP6253487B2 (en) Communication device, transmission device, reception device, and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06781370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008525762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06781370

Country of ref document: EP

Kind code of ref document: A1