WO2010052797A1 - Magnetic property detection apparatus - Google Patents

Magnetic property detection apparatus Download PDF

Info

Publication number
WO2010052797A1
WO2010052797A1 PCT/JP2008/070411 JP2008070411W WO2010052797A1 WO 2010052797 A1 WO2010052797 A1 WO 2010052797A1 JP 2008070411 W JP2008070411 W JP 2008070411W WO 2010052797 A1 WO2010052797 A1 WO 2010052797A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
quality detection
magnetic field
magnet
divided
Prior art date
Application number
PCT/JP2008/070411
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 上山
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to JP2010536631A priority Critical patent/JP5242698B2/en
Priority to PCT/JP2008/070411 priority patent/WO2010052797A1/en
Publication of WO2010052797A1 publication Critical patent/WO2010052797A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/04Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint

Definitions

  • the present invention relates to a magnetic quality detection device that detects the magnetism of a paper sheet by transporting a paper sheet printed with magnetic ink along a transport surface, and in particular, accurately detects the difference in coercive force characteristics of the magnetic ink.
  • the present invention relates to a magnetic quality detection device capable of detecting.
  • magnetic ink containing a magnetic material has been used as printing ink for paper sheets such as banknotes and gift certificates from the viewpoint of preventing counterfeiting.
  • a hard magnetic ink having a large coercive force and a soft magnetic ink having a small coercive force are used in combination, and a difference in the coercive force characteristic of each magnetic ink is detected by a magnetic quality detection device.
  • the authenticity of the paper sheet is determined.
  • Patent Document 1 discloses a magnetic quality detection device that detects the magnetic quality of paper sheets printed with hard magnetic ink and soft magnetic ink.
  • the magnetic ink is saturated and magnetized, and an appropriate bias magnetic field is applied to detect the hard magnetic ink and the hard / soft mixed magnetic pattern of the soft magnetic ink.
  • the magnetization of the hard magnetic ink is erased and only the magnetization of the soft magnetic ink remains.
  • the intensity of the bias magnetic field is adjusted so that the residual magnetization of the hard magnetic ink becomes zero in the genuine paper sheet, only the magnetic pattern of the soft magnetic ink is detected in the genuine paper sheet. .
  • the authenticity of the paper sheet can be determined.
  • a magnet etc. are provided in the single side
  • the intensity of the bias magnetic field is adjusted so that the residual magnetization of the hard magnetic ink becomes zero with respect to the direction of the perpendicular to the conveyance surface in the conveyance path (hereinafter referred to as “Y direction”).
  • the residual magnetization in the transport direction (hereinafter referred to as “X direction”) in the transport path is not considered.
  • the direction of the magnetic field lines is not necessarily parallel to the Y direction, and the magnetic field lines pass through the paper sheet at a predetermined angle. That is, an X-direction component exists in the lines of magnetic force in the divergent magnetic field.
  • the residual magnetization of the hard magnetic ink in the Y direction is zero, the residual magnetization of the hard magnetic ink in the X direction is not necessarily zero. Accordingly, there is a problem that the combined residual magnetization in the X direction and the Y direction cannot be accurately set to 0, and the authenticity determination accuracy cannot be sufficiently increased.
  • the present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a magnetic quality detection device capable of accurately detecting a difference in coercive force characteristics of magnetic ink.
  • the present invention provides a magnetic quality detection device for detecting the magnetism of the paper sheet by transporting the paper sheet printed with magnetic ink along the transport surface.
  • a magnet unit in which different poles of magnets are connected by a yoke is disposed at a position facing each other across the transport surface, and the direction of a magnetic vector in the magnetism detection section on the transport surface is the transport surface.
  • magnetic field generating means adjusted so that the magnetic field strength is non-decreasing (monotonically increasing) or non-increasing (monotonically decreasing) with respect to the conveyance direction in the magnetic detection section, and provided in the magnetic detection section And a magnetic quality detecting means.
  • each magnet unit of the magnetic field generating means is arranged so that the magnetic poles of the magnets facing each other across the transport surface are different from each other. .
  • the present invention is the above invention, wherein the magnetic field generation means further includes a plurality of divided magnetic guide plates divided in the transport direction on the transport surface side of each magnet unit, and the magnetic quality detection means The position corresponding to the divided magnetic guide plate is provided closer to the conveying surface than the divided magnetic guide plate.
  • the present invention is characterized in that, in the above-mentioned invention, the magnetic field generating means further comprises a position adjusting mechanism for adjusting a position of the divided magnetic guiding plate in the transport direction.
  • the present invention is the above invention, wherein the magnetic field generation means further includes one magnetic guide plate on the transport surface side of one of the magnet units, and the magnetic quality detection means includes the magnetic guide plate. It is provided closer to the transport surface than the above.
  • the present invention is the above invention, wherein the magnetic field generating means adjusts a distance between the transport surface and the one magnet unit by using the magnetic guide plates having different magnetic conductivities and / or plate thicknesses. It is characterized by.
  • the magnet units in which the different poles of the magnet are connected by the yoke are arranged at positions facing each other across the transport surface, and the direction of the magnetic vector in the magnetism detection section on the transport surface is the same as the transport surface. Since the magnetic field generating means that is vertical and adjusted so that the magnetic field intensity is not decreased or not increased with respect to the conveyance direction in the magnetic detection section, and the magnetic quality detection means provided in the detection section are provided. By transporting the paper sheet at a position where the direction of the magnetic force line is in the perpendicular direction of the paper sheet, it is possible to accurately detect the difference in coercive force characteristics of the magnetic ink.
  • each magnet unit of the magnetic field generating means is arranged so that the magnetic poles of the magnets facing each other across the transport surface are different from each other.
  • the magnetic field generating means further includes a plurality of divided magnetic guiding plates divided in the conveying direction on the conveying surface side of each magnet unit, and the magnetic quality detecting means is provided on the divided magnetic guiding plates. Since the corresponding position is provided closer to the conveyance surface than the divided magnetic guide plate, the magnetic field strength between the magnet units can be changed stepwise by using the divided magnetic guide plate. Thus, there is an effect that it is possible to widen the allowable range of the displacement of the magnetic quality detection means.
  • the magnetic field generating means further includes a position adjusting mechanism that adjusts the position of the divided magnetic guide plate in the transport direction, so that the magnetic field strength between the magnet units can be adjusted. Play.
  • the magnetic field generating means further includes one magnetic guide plate on the transport surface side of one magnet unit, and the magnetic quality detection means is provided closer to the transport surface than the magnetic guide plate.
  • the magnetic field generating means adjusts the distance between the transport surface and one of the magnet units by using magnetic plates having different magnetic conductivities and / or plate thicknesses. There is an effect that the position in the perpendicular direction of the paper sheet can be adjusted in detail.
  • FIG. 1 is a diagram illustrating an outline of the magnetic quality detection device according to the first embodiment.
  • FIG. 2 is a diagram illustrating lines of magnetic force and magnetic field strength distribution generated by the magnetic quality detection apparatus according to the first embodiment.
  • FIG. 3 is a diagram showing saturation magnetization curves of hard magnetic ink and soft magnetic ink and values detected by the MR sensor.
  • FIG. 4 is a diagram illustrating an outline of the magnetic quality detection device according to the second embodiment.
  • FIG. 5 is a diagram illustrating a magnetic force line distribution of the magnetic quality detection device according to the second embodiment.
  • FIG. 6 is a diagram showing the relationship between the thickness and magnetic permeability of the magnetic guide plate and the position of the magnetic field inflection point.
  • FIG. 1 is a diagram illustrating an outline of the magnetic quality detection device according to the first embodiment.
  • FIG. 2 is a diagram illustrating lines of magnetic force and magnetic field strength distribution generated by the magnetic quality detection apparatus according to the first embodiment.
  • FIG. 3 is a diagram showing saturation magnetization curves
  • FIG. 7 is a diagram illustrating a modification of the magnetic quality detection device according to the second embodiment.
  • FIG. 8 is a diagram illustrating an outline of the magnetic quality detection device according to the third embodiment.
  • FIG. 9 is a diagram illustrating lines of magnetic force and magnetic field strength distribution generated by the magnetic quality detection device according to the third embodiment.
  • FIG. 10 is a diagram showing a change in the magnetic field strength distribution when the uppermost divided magnetic guide plate is moved.
  • FIG. 11 is a diagram illustrating a change in magnetic field strength distribution when the most downstream divided magnetic guide plate is moved.
  • FIG. 12 is a diagram showing a modified example of the arrangement of the divided magnetic guide plates.
  • FIG. 13 is a diagram showing the configuration and magnetic field strength distribution of the magnetic quality detection apparatus 1 that supports bidirectional conveyance.
  • FIG. 14 is a diagram showing the configuration and magnetic field strength distribution of the magnetic quality detection apparatus 2 that supports bidirectional conveyance.
  • FIG. 15 is a diagram showing a variation of the paper sheet pressing mechanism.
  • Magnetic quality detection apparatus 101 Conveyance direction 110 Upper unit 111 Yoke 112, 113 Magnet 120 Lower unit 121 Yoke 122, 123 Magnet 124 Substrate 125 MR sensor (MR1) 126 MR sensor (MR2) 200 Magnetic quality detection apparatus 210 Upper unit 211 Yoke 212, 213 Magnet 220 Lower unit 221 Yoke 222, 223 Magnet 224 Substrate 225 MR sensor (MR1) 226 MR sensor (MR2) 227 Magnetic guide plate 300 Magnetic quality detection device 310 Upper unit 311 Yoke 312, 313 Magnet 314a, 314b, 314c, 314d Split magnetic guide plate 320 Lower knit 321 York 322, 323 Magnet 324a, 324b, 324c, 324d Split magnetic guide plate 325 Substrate 326 MR sensor (MR1) 327 MR sensor (MR2)
  • the magnet units are respectively arranged at symmetrical positions across the conveyance path.
  • the single magnetic guide plate is arranged on the conveyance path side of one magnet unit.
  • a case where a plurality of divided magnetic guide plates divided in the transport direction are arranged on the transport path side of both magnet units will be described.
  • FIG. 1 is a diagram illustrating an outline of the magnetic quality detection device 100 according to the first embodiment.
  • the magnetic quality detection apparatus 100 according to the first embodiment includes an upper unit 110 provided above the conveyance path and a lower unit 120 provided below the conveyance path. .
  • the upper unit 110 has a magnetic field generation unit (magnetic field generation means) in which a magnet 112 and a magnet 113 are connected by a yoke 111 in a housing provided with a wear-resistant material on the conveyance path side.
  • the yoke 111 is a member made of a material having a high magnetic conductivity such as permalloy, for example.
  • the magnet 112 and the magnet 113 in the upper unit 110 are provided along the lower surface of the housing, and the magnet 112 is upstream in the transport direction 101 and the magnet 113 is downstream. Are arranged. Magnet 112 and magnet 113 may be configured as permanent magnets or as electromagnets.
  • the lower unit 120 has a magnetic field generating unit (magnetic field generating means) in which a magnet 122 and a magnet 123 are connected by a yoke 121 in a housing provided with a wear-resistant material on the conveyance path side. Further, as shown in the figure, the magnet 122 and the magnet 123 in the lower unit 120 are provided toward the upper surface of the housing, and the magnet 122 is upstream in the transport direction 101 and the magnet 123 is downstream. Are arranged. Note that the magnet 122 and the magnet 123 may also be configured as permanent magnets or electromagnets, similarly to the magnets 112 and 113.
  • a magnetic quality detection unit (magnetic quality detection means) is provided along the upper surface of the housing.
  • the magnetic quality detection unit is configured by providing an MR (MagnetoResistive) sensor (MR1) 125 and an MR sensor (MR2) 126 on a substrate 124.
  • MR1 Magnetic Magnetic Resistive
  • MR2 Magnetic MR sensor
  • the MR sensor refers to a sensor whose resistance value changes in accordance with the magnetic field strength.
  • a Hall sensor, a magnetic impedance sensor, a fluxgate sensor, or the like may be used.
  • the magnet 112 of the upper unit 110 and the magnet 122 of the lower unit 120 face each other across the transport path. Further, the magnet 113 of the upper unit 110 and the magnet 123 of the lower unit 120 are opposed to each other across the conveyance path. Thus, the upper unit 110 and the lower unit 120 form a closed magnetic path with the conveyance path as an air gap.
  • the closed magnetic circuit will be described in more detail.
  • FIG. 2 is a diagram illustrating magnetic field lines and magnetic field strength distribution generated by the magnetic quality detection device 100 according to the first embodiment.
  • (A) of the same figure shows the magnetic force line which the magnetic quality detection apparatus 100 generate
  • the magnet 112 of the upper unit 110 has an S pole on the conveyance path side and an N pole on the yoke 111 side
  • the magnet 122 of the lower unit 120 has an N pole on the conveyance path side and a yoke 121.
  • the side is the S pole.
  • the magnet 113 of the upper unit 110 has an N pole on the conveyance path side and an S pole on the yoke 111 side
  • the magnet 123 of the lower unit 120 has an S pole on the conveyance path side and an N pole on the yoke 121 side.
  • each magnet unit (upper unit 110 and lower unit 120) is provided so that the magnets of the opposing magnet units and the opposite poles face each other.
  • the transfer line 21 is perpendicular.
  • the transport line 21 indicates a position through which the transported paper sheet passes, and the direction of the arrow of the transport line 21 indicates the transport direction.
  • the X-direction component of the magnetic field lines becomes 0 and only the Y-direction component, so that the paper sheets can be magnetized only in the Y direction. Therefore, it is possible to reliably control the magnetization of the subject (paper sheets) and improve the accuracy of coercive force detection.
  • the MR sensor (MR1) 125 and the MR sensor (MR2) 126 are disposed in the vicinity of the conveyance line 21 on the conveyance path sandwiched between the upper unit 110 and the lower unit 120, as shown in FIG. By doing in this way, the residual magnetization of the paper sheets magnetized only by the Y direction component can be acquired with high accuracy.
  • the magnetic field strength in the closed magnetic circuit formed by the upper unit 110 and the lower unit 120 has no inflection point between the positions 23/26 shown in the figure. This is represented as a non-decreasing curve 22.
  • the curve 22 does not have an inflection point from the point 22a to the point 22d, and increases monotonously. In this way, by changing the magnetic field intensity so as not to decrease along the saturation magnetization curve, it becomes possible to accurately detect the residual magnetization of the paper sheets saturated and magnetized at the point 22a.
  • the MR sensor (MR1) 125 and the MR sensor (MR2) 126 are respectively arranged at the position 24 and the position 25 shown in the figure, the points included in the non-decreasing section (between the points 22a and 22d). The residual magnetization at 22b and point 22c is detected.
  • the position 24 of the MR sensor (MR1) 125 and the position 25 of the MR sensor (MR2) 126 can be any positions between the points 22a / 22d.
  • the figure shows the case where two MR sensors detect residual magnetization at two points, the number of MR sensors may be three or more.
  • FIG. 3 is a diagram showing saturation magnetization curves of hard magnetic ink and soft magnetic ink and values detected by the MR sensor. Note that (A) in the figure shows the saturation magnetization curve, and (B) in the figure shows the detection value by the MR sensor.
  • the soft magnetic ink that is in a saturated magnetization state at the point 32a at the position 23 is MR at the point 32b at the position 24 (attachment position of the MR sensor (MR1) 125).
  • the residual magnetization is detected by the sensor (MR1) 125, and the residual magnetization is detected by the MR sensor (MR2) 126 at a point 32c at the position 25 (attachment position of the MR sensor (MR2) 126).
  • the hard magnetic ink that has been in a saturated magnetization state at the point 31a at the position 23 has its residual magnetization detected by the MR sensor (MR1) 125 at the point 31b at the position 24 (attachment position of the MR sensor (MR1) 125).
  • the residual magnetization is detected by the MR sensor (MR2) 126 at a point 31c at the position 25 (attachment position of the MR sensor (MR2) 126).
  • the position 25 (attachment position of the MR sensor (MR2) 126) is adjusted to a position where the magnetization intensity at the point 31c becomes 0 in the case of a genuine paper sheet.
  • the MR sensor (MR2) 126 does not detect the magnetic pattern of the hard magnetic ink in the case of an authentic paper sheet, and detects the magnetic pattern of the hard magnetic ink in the case of an unauthentic paper sheet. Will do.
  • FIG. 5B there are three soft magnetic ink lines and two hard magnetic ink lines so that the magnetic ink pattern of a genuine paper sheet intersects the transport line 21. Suppose that it is attached to paper sheets.
  • the detected value of the MR sensor (MR1) 125 arranged at the position 24 is as shown by a curve 33 in FIG.
  • the MR sensor (MR1) 125 detects both the residual magnetization caused by the soft magnetic ink and the residual magnetization caused by the hard magnetic ink (see 33a in the figure).
  • the detection value of the MR sensor (MR2) 126 arranged at the position 25 is as shown by a curve 34 in FIG. That is, the MR sensor (MR2) 126 detects the residual magnetization due to the soft magnetic ink, but does not detect the residual magnetization due to the hard magnetic ink (see 34a in the figure).
  • the authenticity of the paper sheets can be determined by arranging the MR sensor (MR2) 126 at a position where the residual magnetization of the hard magnetic ink becomes zero.
  • the upper unit 110 is configured so that the X component of the magnetic force lines becomes 0 in the paper sheet conveyance line, that is, the magnetic field lines are orthogonal to the conveyance line. Since the closed magnetic path is formed by the lower unit 120, the position where the residual magnetization of the hard magnetic ink becomes 0 can be accurately estimated.
  • the upper unit and the lower unit are arranged at symmetrical positions with respect to the paper sheet conveyance line, and the closed magnetic path is configured by the upper unit and the lower unit.
  • the magnetic field lines were made to be orthogonal to the paper sheets being conveyed. Therefore, the magnetic field component parallel to the paper sheet is eliminated and the paper sheet is magnetized only by the magnetic field component orthogonal to the paper sheet, so that the residual magnetization of ink having different magnetic characteristics can be accurately acquired. Can do. As a result, the authenticity of the paper sheet can be determined with high accuracy.
  • the residual magnetization of the ink having different magnetic characteristics is detected and the authenticity of the paper sheet is determined based on the detected residual magnetization.
  • the magnetization intensity is changed along the saturation magnetization curve, an absolute magnetic quantity can be detected. Therefore, it is possible to perform authenticity determination based on an absolute magnetic quantity.
  • Example 1 Although it showed about the case where a magnet unit was each arrange
  • FIG. 4 is a diagram illustrating an outline of the magnetic quality detection device 200 according to the second embodiment.
  • the magnetic quality detection apparatus 200 according to the second embodiment includes an upper unit 210 provided above the conveyance path and a lower unit 220 provided below the conveyance path.
  • the lower unit 220 is different from the magnetic quality detection apparatus 100 according to the first embodiment in that the lower unit 220 includes a magnetic guide plate 227.
  • the upper unit 210 includes a yoke 211, a magnet 212, and a magnet 213 in a housing in which a wear-resistant material is provided on the conveyance path side, similarly to the magnetic quality detection device 100 according to the first embodiment.
  • the lower unit 220 includes a yoke 221, a magnet 222, and a magnet 223 in a housing provided with a wear-resistant material on the conveyance path side, and an MR sensor (MR1) 225 and an MR sensor (MR2).
  • MR1 MR1
  • MR2 MR sensor
  • the above-described magnetic guide plate 227 is provided between the substrate 224 provided with H.226, and the magnet 222 and the magnet 223.
  • the magnetic guide plate 227 is attached so as not to contact the magnet 222 or the magnet 223 of the lower unit 220. The reason is that when the magnetic guide plate 227 and the magnet (magnet 222 or magnet 223) are brought into contact with each other, a closed magnetic circuit is formed between these members, and a magnetic field is formed between the upper unit 210 and the lower unit 220. Because it will not be done.
  • the magnetic quality detection apparatus 200 includes the magnetic guide plate 227, so that the position of the line where the magnetic lines of force are perpendicular to the subject (paper sheet) can be drawn toward the lower unit 220 side. That is, according to the magnetic quality detection apparatus 200 according to the second embodiment, the position of the conveyance line where the magnetic force line is only the Y-axis component does not need to be an intermediate point between the upper unit 210 and the lower unit 220.
  • FIG. 5 is a diagram illustrating a magnetic force line distribution of the magnetic quality detection device 200 according to the second embodiment.
  • (A) in the figure shows the magnetic field line distribution of the magnetic quality detection device 200 according to the second embodiment
  • (B) in the same figure shows the magnetic field detection device 100 according to the first embodiment for reference. Magnetic field line distribution is shown respectively.
  • each magnetic field line is only near the lower unit 220 and has only a Y-axis component (parallel to the Y-axis). Therefore, the transport line 51 can be set at a position closer to the lower unit 220.
  • the transport line 51 indicates a position through which the transported paper sheet passes, and the direction of the arrow of the transport line 51 indicates the transport direction.
  • the conveyance line 21 in the magnetic quality detection device 100 according to the first embodiment needs to be provided at an intermediate point between the upper unit 110 and the lower unit 120.
  • the conveyance line 51 in the magnetic quality detection apparatus 200 according to the above can be provided on the surface of the lower unit 220 having the MR sensor. Therefore, the measurement accuracy of residual magnetization by the MR sensor can be improved.
  • the magnetic field lines are only Y-axis components (parallel to the Y-axis). It is possible to change the position.
  • FIG. 6 is a diagram showing the relationship between the thickness and magnetic conductivity of the magnetic guide plate 227 and the position of the magnetic field inflection point.
  • the magnetic field line inflection point refers to a point on the magnetic field line where the magnetic field line is only the Y-axis component (parallel to the Y axis), and the position of the magnetic field line inflection point refers to the magnetic field line inflection point for each magnetic field line.
  • the distance between the connected line and the conveyance surface here, the upper surface of the lower unit 220
  • a wear-resistant material is applied to the upper surface of the lower unit 220.
  • the distance (clearance) between the upper unit 210 and the lower unit 220 is 8.0 mm
  • the distance between the magnetic guide plate 227 and the magnets (magnet 222 and magnet 223) is 0.
  • the line of magnetic force when the distance between the magnetic conducting plate 227 and the upper surface of the lower unit 220 is 1 mm is set to 0.5 mm.
  • (B) in the figure shows a graph showing the relationship between the distance (d) between the magnetic field inflection point and the conveying surface and the thickness (T) of the magnetic guide plate 227, and the magnetic permeability ( This is shown for each ⁇ ).
  • the graph representing the relationship between the distance (d) and the thickness (T) is a curve 61 when the magnetic permeability ( ⁇ ) is 50, and a curve 62 when the magnetic permeability ( ⁇ ) is 100.
  • the curve 63 is obtained.
  • the curve 64 is obtained when the magnetic permeability ( ⁇ ) is 500
  • the curve 65 is obtained when the magnetic permeability ( ⁇ ) is 1000.
  • the distance (d) tends to decrease as the magnetic permeability ( ⁇ ) increases and the thickness (T) increases. In other words, the distance (d) tends to increase as the magnetic permeability ( ⁇ ) decreases and the thickness (T) decreases.
  • the thickness (T) of the magnetic guide plate 227 is about 0.3 mm to 2.0 mm.
  • the magnetic permeability ( ⁇ ) and the thickness (T) are set so that the magnetic permeability ( ⁇ ) is about 100 to 500 and the distance (d) becomes zero. It can be seen that it is sufficient to select.
  • the position of the inflection point of the magnetic lines of force can be adjusted near the upper surface of the lower unit 220.
  • the yoke 211, the magnet 212, and the magnet 213 constitute the upper unit 210, and the magnet 212 and the magnet 213 are arranged on the conveyance path side.
  • the magnetic field strength in the conveyance path may be increased as shown in the following example.
  • FIG. 7 is a diagram illustrating a modification of the magnetic quality detection device 200 according to the second embodiment.
  • a yoke 81 is further provided on the conveyance path side of the magnet 212 in the upper unit 210.
  • the magnetic field strength between the lower unit 220 and the magnet 222 can be increased.
  • the magnetism for saturation magnetization of the paper sheet 500 can be enhanced.
  • the conveyance line 82 points to the position through which the conveyed paper sheet passes, and the direction of the arrow of the conveyance line 81 indicates the conveyance direction.
  • Example 2 the position of the inflection point of the lines of magnetic force is made closer to the upper surface of the lower unit by arranging a single magnetic guide plate on the conveyance path side of the lower unit.
  • the position of the inflection point of the lines of magnetic force was adjusted by changing the thickness of the magnetic guide plate and the magnetic permeability. Therefore, the MR sensor of the lower unit can detect the residual magnetization of the paper sheet with high accuracy. In addition, the size of the magnetic quality detection device can be reduced.
  • Example 3 a case where a plurality of divided magnetic guide plates are used will be described.
  • FIG. 8 is a diagram illustrating an outline of the magnetic quality detection device 300 according to the third embodiment.
  • the magnetic quality detection apparatus 300 according to the third embodiment includes an upper unit 310 provided above the conveyance path and a lower unit 320 provided below the conveyance path.
  • the upper unit 310 includes a plurality of divided magnetic guide plates (314a, 314b, 314c and 314d)
  • the lower unit 320 also includes a plurality of divided magnetic guide plates (324a, 324b, 324c and 324d). It differs from the magnetic quality detection apparatus 100 which concerns.
  • the divided magnetic guide plate 314a of the upper unit 310 is opposed to the divided magnetic guide plate 324a of the lower unit 320 across the conveyance path.
  • the divided magnetic guide plate 314b and the divided magnetic guide plate 324b, The divided magnetic plate 314c and the divided magnetic plate 324c, and the divided magnetic plate 314d and the divided magnetic plate 324d face each other.
  • the magnetic field strength between the upper unit 310 and the lower unit 320 can be changed in a stepped manner, and the allowable range of the MR sensor installation position deviation can be widened. Is possible.
  • the upper unit 310 includes a yoke 311, a magnet 312, and a magnet 313 in a housing provided with a wear-resistant material on the conveyance path side.
  • the divided magnetic guide plate 314 a is disposed on the conveyance path side of the magnet 312. Are provided with divided magnetic guide plates 314d on the conveying path side of the magnet 313, respectively. Further, between the magnet 312 and the magnet 313, there are divided magnetic guide plates 314b and divided magnetic guide plates 314c so as to be parallel to the divided magnetic guide plates 314a and 314d.
  • the lower unit 320 has a yoke 321, a magnet 322, and a magnet 323 in a housing provided with a wear-resistant material on the conveyance path side.
  • the divided magnetic guide plate 324 a is disposed on the conveyance path side of the magnet 322.
  • a substrate 325 provided with an MR sensor (MR 1) 326 and an MR sensor (MR 2) 327 is provided near the upper surface in the lower unit 320.
  • FIG. 9 is a diagram illustrating magnetic field lines and magnetic field strength distribution generated by the magnetic quality detection device 300 according to the third embodiment.
  • (A) in the figure shows the lines of magnetic force generated by the magnetic quality detection device 300
  • (B) in the figure shows the magnetic field strength distribution.
  • the magnet 312 of the upper unit 310 has an S pole on the conveyance path side and an N pole on the yoke 311 side
  • the magnet 322 of the lower unit 320 has an N pole on the conveyance path side and a yoke 321.
  • the side is the S pole.
  • the magnet 313 of the upper unit 310 has an N pole on the conveyance path side and an S pole on the yoke 311 side
  • the magnet 323 of the lower unit 320 has an S pole on the conveyance path side and an N pole on the yoke 321 side.
  • each magnet unit (upper unit 310 and lower unit 320) is provided such that the magnets of the opposing magnet unit and the opposite poles face each other, so that each magnetic field line is opposed to the opposing upper unit 310 and lower unit. It becomes perpendicular to the conveyance line 501 at an intermediate point 320.
  • the transport line 501 indicates a position through which the transported paper sheet passes, and the direction of the arrow of the transport line 501 indicates the transport direction.
  • the X-direction component of the magnetic field lines becomes 0 and only the Y-direction component, so that the paper sheets can be magnetized only in the Y direction. Therefore, it is possible to reliably control the magnetization of the subject (paper sheets) and improve the accuracy of coercive force detection.
  • the MR sensor (MR1) 326 is in a region between the divided magnetic guide plates 314b / divided magnetic guide plates 324b
  • the MR sensor (MR2) 327 is in a region between the divided magnetic guide plates 314c / divided magnetic guide plates 324c.
  • Each is arranged. This is because the change in the magnetic field intensity becomes gentle in the region sandwiched between the opposed divided magnetic guide plates. This point will be described in more detail with reference to FIG.
  • the magnetic field strength in the closed magnetic path formed by the upper unit 310 and the lower unit 320 is expressed as a curve 502 having no inflection point on the downstream side of the position 503. Further, in the vicinity of the position 504 and the position 505, the change in the magnetic field strength is stagnant (in a step shape).
  • the MR sensor (MR1) 326 is attached at the position 504, and acquires the magnetic field strength at the point 502b.
  • the magnetic field strength hardly changes. Therefore, even if the mounting position of the MR sensor (MR1) 326 is not accurately set to the position 504, it is possible to detect a magnetic field strength equivalent to that when the MR sensor (MR1) 326 is installed at the position 504.
  • the MR sensor (MR2) 327 is attached at a position 505 and acquires the magnetic field strength at the point 502c, but the mounting displacement of the MR sensor (MR2) 327 is also caused by the MR sensor (MR1) 326. It is allowed for the same reason as the case.
  • the magnetic field strength distribution between the upper unit 310 and the lower unit 320 can be changed by shifting the position of the divided magnetic guide plate to the upstream side or the downstream side in the transport direction. Therefore, hereinafter, changes in the magnetic field strength distribution accompanying the movement of the divided magnetic guide plates will be described with reference to FIGS. 10 and 11.
  • FIG. 10 is a diagram showing a change in magnetic field strength distribution when the most upstream divided magnetic guide plate (the divided magnetic guide plate 314a and the divided magnetic guide plate 324a) is moved.
  • the case shown in FIG. 10B is the default position, and in this case, the distance between each divided magnetic guide plate is 0.5 mm, 1.5 mm, and 0.5 mm from the left in FIG. .
  • a position adjusting mechanism 111 is attached to each of the divided magnetic guide plates 314a and the divided magnetic guide plates 324a.
  • the position adjusting mechanism 111 is connected to, for example, a screw 111b, a fixed plate 111a that fixes the position of the screw 111b while allowing the screw 111b to rotate, and the divided magnetic guide plate 314a or the divided magnetic guide plate 324a.
  • a connecting member 111c that can change the relative distance from the fixed plate 111a by the rotation.
  • (E) in the figure shows curves indicating changes in magnetic field intensity corresponding to (A) to (D), respectively.
  • the curve 511 corresponds to (A)
  • the curve 512 corresponds to (B)
  • the curve 513 corresponds to (C)
  • the curve 514 corresponds to (D).
  • the magnetic field strength distribution can be adjusted by changing the interval between the divided magnetic guide plates.
  • FIG. 11 is a diagram showing a change in magnetic field strength distribution when the most downstream divided magnetic guide plate (divided magnetic guide plate 314d and divided magnetic guide plate 324d) is moved.
  • the case shown in FIG. 11C is the default position, and in this case, the distance between each divided magnetic guide plate is 0.5 mm, 1.5 mm, and 0.5 mm from the left in FIG. .
  • the position adjusting mechanism 111 shown in FIG. 10 is connected to the divided magnetic guide plates 314d and 324d.
  • (E) in the figure shows curves indicating changes in magnetic field intensity corresponding to (A) to (D), respectively.
  • the curve 521 corresponds to (A)
  • the curve 522 corresponds to (B)
  • the curve 523 corresponds to (C)
  • the curve 524 corresponds to (D).
  • the magnetic field strength distribution can be adjusted by changing the interval between the divided magnetic guide plates.
  • FIGS. 10 and 11 show the case where the most upstream and the most downstream divided magnetic guide plates are moved, other divided magnetic guide plates may be moved. Further, the number adjusting mechanism for detachably fixing each divided magnetic guide plate may be used, and the number of the divided magnetic guide plates may be adjusted.
  • FIG. 12 is a diagram showing a modified example of the arrangement of the divided magnetic guide plates. As shown in the figure, even if the divided magnetic guide plates are arranged so as not to be parallel to the conveyance direction, a conveyance line (see the arrow in the figure) in which each magnetic field line is parallel to the Y axis can be obtained.
  • the magnetic quality detection apparatus 300 with the conveyance direction fixed has been described so far, but the magnetic quality detection apparatus 300 corresponding to bidirectional conveyance may be configured. Therefore, hereinafter, the magnetic quality detection device 300 corresponding to the bidirectional conveyance will be described with reference to FIGS. 13 and 14.
  • FIG. 13 is a diagram showing the configuration and magnetic field strength distribution of the magnetic quality detection apparatus 1 corresponding to bidirectional conveyance.
  • (A) in the figure shows the lines of magnetic force generated by the magnetic quality detection device 300a
  • (B) in the figure shows the magnetic field strength distribution.
  • the magnetic quality detection device 300a has a shape in which the magnetic quality detection device 300 shown in FIG. 9 is connected by being inverted at a position 542 shown in FIG.
  • the magnetic quality detection apparatus 300a is comprised from the upper unit 310a and the lower unit 320a.
  • the transport line is located at the position of the double arrow shown in the figure, and the direction of each magnetic force line is parallel to the Y axis on the transport line.
  • the curve 544 showing the change in the magnetic field strength is represented as a non-decreasing graph having no inflection points in the section from the position 541 to the position 542.
  • the curve 544 is represented as a non-increasing graph having no inflection points in the section from the position 542 to the position 543.
  • MR sensors “MR1” and “MR2” shown in the figure are used to convey the paper sheets from right to left in the figure.
  • FIG. 14 is a diagram showing the configuration and magnetic field intensity distribution of the magnetic quality detection apparatus 2 that supports bidirectional conveyance.
  • (A) in the figure shows the lines of magnetic force generated by the magnetic quality detection device 300b
  • (B) in the figure shows the magnetic field strength distribution.
  • the magnetic quality detection device 300b has a shape obtained by removing the wall at the central portion from the magnetic quality detection device 300a shown in FIG.
  • the magnetic quality detection device 300a includes an upper unit 310b and a lower unit 320b.
  • a conveyance line becomes a position of the double arrow shown in the same figure, and the direction of each magnetic force line becomes parallel to a Y-axis on this conveyance line.
  • the curve 554 showing the change in the magnetic field strength is represented as a non-decreasing graph having no inflection point in the section from the position 551 to the position 552, and the position 552 to the position 553. In this section, it is expressed as a non-increasing graph with no inflection points.
  • the magnetic quality detection apparatus 300b since the magnetic quality detection apparatus 300b has a symmetric shape with respect to the position 552, it can cope with bidirectional conveyance.
  • the MR sensors “MR1” and “MR2” shown in the figure are used to convey the paper sheets from right to left in the figure.
  • a plurality of divided magnetic guide plates are arranged on the conveyance path side of the upper unit, and a plurality of divided magnetic guide plates are arranged on the conveyance path side of the lower unit.
  • the change of the magnetic field strength between the lower units can be stepped. Therefore, it is possible to widen the allowable range of MR sensor mounting deviation. Further, the magnetic field strength distribution can be adjusted by changing the position of the divided magnetic guide plates or changing the number of the divided magnetic guide plates.
  • FIG. 15 is a diagram showing a variation of the paper sheet pressing mechanism.
  • (A) in the figure shows the paper sheet pressing mechanism added to the magnetic quality detection apparatus 300 according to the third embodiment
  • (B) in the same figure and (C) in the same figure show the paper sheet holding mechanism.
  • the paper sheet holding mechanism added to the magnetic quality detection apparatus 200 according to Example 2 is shown.
  • Also shown in the drawing are a paper sheet 500, a transport direction 501 of the paper sheet 500, and a wear resistant plate 502 made of a wear resistant material provided on the upper surface (conveying path side) of the lower unit 320 or the lower unit 220. Show.
  • the distance between the upper unit 310 and the lower unit 320 is larger than that of the magnetic quality detection device 200 according to the second embodiment. Need to be narrow. This is because a magnetic field inflection point exists at an intermediate position between the upper unit 310 and the lower unit 320, and therefore, the transport position of the paper sheet 500 needs to be near the magnetic field inflection point position.
  • the pressing spring 71 is used as a paper sheet pressing mechanism as shown in FIG.
  • the pressing spring 71 is fixed by a pin 72 and presses the conveyed paper sheet 500 against the upper surface of the lower unit 220.
  • pressing with a leaf spring such as the pressing spring 71 tends to cause jam (paper jam) during high-speed conveyance of paper sheets.
  • the magnetic quality detection device 200 if used, the magnetic field inflection point position is adjusted near the upper surface of the lower unit. Therefore, the distance between the upper unit 210 and the lower unit 220 can be increased. Thereby, the arm with a roller with a high pressing effect with respect to the paper sheet 500 can be used as a paper sheet pressing mechanism.
  • the arm with roller is configured by attaching a roller 75 to the arm 73.
  • the arm 73 that supports the roller 75 with the roller shaft 76 is attached so as to rotate around the arm shaft 74, and one end of the arm 73 is fixed to the pin 77 via the spring 78. .
  • the arm with a roller When such an arm with a roller is used, the arm with a roller may move to a position indicated by a broken line in the figure (see 73a in the figure). Therefore, as shown in FIG. 5B, the upper unit 210 needs to be provided at a position where it does not contact the arm with roller. For this reason, as shown in (B) of the same figure, it is necessary to make the space
  • the lower surface of the upper unit 210 is recessed on the lower side so as to avoid contact with the arm with rollers, and the mounting position of the upper unit 210 is changed to the position shown in FIG.
  • the mounting position of the upper unit 210 in B) may be closer to the conveyance path side than the attachment position (see 79 in the figure).
  • the magnetic quality detection device is useful when it is desired to accurately detect the difference in coercive force characteristics of magnetic ink.

Abstract

A magnetic property detection apparatus in which an upper unit and a lower unit are disposed at symmetrical positions with respect to the conveyor line of paper sheets to constitute a closed magnetic path composed of the upper unit and the lower unit so that magnetic lines at the conveyor line are orthogonal to the paper sheets being conveyed. On the side of the conveyance path of the lower unit, a magnetic permeable solid plate is disposed to move the position of the inflection point of the magnetic lines closer to the upper surface of the lower unit, and the thickness and magnetic permeance of the magnetic permeable plate are changed to adjust the position of the inflection point of the magnetic lines. Moreover, a plurality of divided magnetic permeable plates are arranged on the side of the conveyor path of the upper unit, and a plurality of divided magnetic permeable plates are arranged on the side of the conveyor path of the lower unit.

Description

磁気質検出装置Magnetic quality detection device
 本発明は、磁気インクで印刷された紙葉類を搬送面に沿って搬送することで紙葉類の磁気を検出する磁気質検出装置に関し、特に、磁気インクの保磁力特性の差異を精度良く検出することができる磁気質検出装置に関する。 The present invention relates to a magnetic quality detection device that detects the magnetism of a paper sheet by transporting a paper sheet printed with magnetic ink along a transport surface, and in particular, accurately detects the difference in coercive force characteristics of the magnetic ink. The present invention relates to a magnetic quality detection device capable of detecting.
 従来から、紙幣や商品券といった紙葉類の印刷インクには、偽造防止の観点から磁性体を含んだ磁気インクが用いられている。ここで、磁気インクとしては、保磁力が大きい硬磁性インクや、保磁力が小さい軟磁性インクが併用して用いられており、磁気インクごとの保磁力の特性の差異を磁気質検出装置で検出することで、紙葉類の真偽判別が行われる。 Conventionally, magnetic ink containing a magnetic material has been used as printing ink for paper sheets such as banknotes and gift certificates from the viewpoint of preventing counterfeiting. Here, as the magnetic ink, a hard magnetic ink having a large coercive force and a soft magnetic ink having a small coercive force are used in combination, and a difference in the coercive force characteristic of each magnetic ink is detected by a magnetic quality detection device. Thus, the authenticity of the paper sheet is determined.
 たとえば、特許文献1には、硬磁性インクおよび軟磁性インクで印刷された紙葉類の磁気質を検出する磁気質検出装置が開示されている。かかる磁気質検出装置では、磁気インクを飽和磁化させたうえで適度なバイアス磁界を印加することで、硬磁性インクおよび軟磁性インクの硬軟混合磁気パターンを検出する。 For example, Patent Document 1 discloses a magnetic quality detection device that detects the magnetic quality of paper sheets printed with hard magnetic ink and soft magnetic ink. In such a magnetic quality detection device, the magnetic ink is saturated and magnetized, and an appropriate bias magnetic field is applied to detect the hard magnetic ink and the hard / soft mixed magnetic pattern of the soft magnetic ink.
 そして、硬磁性インクの保磁力に相当するバイアス磁界を印加することで、硬磁性インクの磁化消去を行い、軟磁性インクの磁化のみを残留させる。この場合、真正な紙葉類において硬磁性インクの残留磁化が0となるようにバイアス磁界の強度を調整すると、真正な紙葉類では、軟磁性インクの磁気パターンのみが検出されることになる。そして、先に取得した硬軟混合磁気パターンと、あらたに取得した軟磁気パターンとを用いることで、紙葉類の真偽を判別することができる。 Then, by applying a bias magnetic field corresponding to the coercive force of the hard magnetic ink, the magnetization of the hard magnetic ink is erased and only the magnetization of the soft magnetic ink remains. In this case, when the intensity of the bias magnetic field is adjusted so that the residual magnetization of the hard magnetic ink becomes zero in the genuine paper sheet, only the magnetic pattern of the soft magnetic ink is detected in the genuine paper sheet. . Then, by using the previously acquired hard-soft mixed magnetic pattern and the newly acquired soft magnetic pattern, the authenticity of the paper sheet can be determined.
 ところで、特許文献1の磁気質検出装置では、紙葉類の搬送路の片面に磁石などを設け、かかる磁石に発散磁界型の磁界を発生させたうえで紙葉類を通過させることで、紙葉類の真偽判別を行っている。 By the way, in the magnetic quality detection apparatus of patent document 1, a magnet etc. are provided in the single side | surface of the conveyance path of paper sheets, and after making a divergent magnetic field type magnetic field generate | occur | produce in this magnet, paper sheets are passed, Authenticity discrimination of leaves is performed.
特許第3283931号公報Japanese Patent No. 3283931
 しかしながら、特許文献1の技術では、搬送路における搬送面の垂線の向き(以下、「Y方向」と記載する)について、硬磁性インクの残留磁化が0となるようにバイアス磁界の強度が調整されており、搬送路における搬送方向(以下、「X方向」と記載する)の残留磁化については考慮されていない。 However, in the technique of Patent Document 1, the intensity of the bias magnetic field is adjusted so that the residual magnetization of the hard magnetic ink becomes zero with respect to the direction of the perpendicular to the conveyance surface in the conveyance path (hereinafter referred to as “Y direction”). The residual magnetization in the transport direction (hereinafter referred to as “X direction”) in the transport path is not considered.
 ところが、発散磁界型の磁界を用いる場合、磁力線の向きは、必ずしもY方向と平行とはならず、磁力線は、所定の角度をもって紙葉類を通過することになる。すなわち、発散磁界型の磁界における磁力線には、X方向成分が存在する。 However, when a divergent magnetic field is used, the direction of the magnetic field lines is not necessarily parallel to the Y direction, and the magnetic field lines pass through the paper sheet at a predetermined angle. That is, an X-direction component exists in the lines of magnetic force in the divergent magnetic field.
 このため、Y方向における硬磁性インクの残留磁化を0としても、X方向における硬磁性インクの残留磁化は必ずしも0とはならない。したがって、X方向およびY方向の合成残留磁化を精度良く0にすることができず、真偽判別精度を十分に高めることができないという問題があった。 For this reason, even if the residual magnetization of the hard magnetic ink in the Y direction is zero, the residual magnetization of the hard magnetic ink in the X direction is not necessarily zero. Accordingly, there is a problem that the combined residual magnetization in the X direction and the Y direction cannot be accurately set to 0, and the authenticity determination accuracy cannot be sufficiently increased.
 これらのことから、磁気インクの保磁力特性の差異を精度良く検出することができる磁気質検出装置をいかにして実現するかが大きな課題となっている。なお、かかる課題は、磁気質検出装置による検出結果を用いて紙葉類の真偽を判別する紙葉類判別装置についても同様に発生する課題である。 Therefore, how to realize a magnetic quality detection device capable of accurately detecting a difference in coercive force characteristics of magnetic ink is a big problem. Such a problem is also a problem that occurs in the paper sheet discriminating apparatus that discriminates the authenticity of the paper sheet using the detection result of the magnetic quality detection apparatus.
 本発明は、上述した従来技術の課題を解決するためになされたものであり、磁気インクの保磁力特性の差異を精度良く検出することができる磁気質検出装置を提供することを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a magnetic quality detection device capable of accurately detecting a difference in coercive force characteristics of magnetic ink.
 上述した課題を解決し、目的を達成するために、本発明は、磁気インクで印刷された紙葉類を搬送面に沿って搬送することで前記紙葉類の磁気を検出する磁気質検出装置であって、磁石の異極間をヨークで連結した磁石ユニットを、前記搬送面を挟んで対向する位置にそれぞれ配置しており、前記搬送面における磁気検出区間において磁気ベクトルの向きが前記搬送面と垂直であり、かつ、磁界強度が前記磁気検出区間における搬送向きについて非減少(単調増加)または非増加(単調減少)となるように調整された磁界発生手段と、前記磁気検出区間に設けられた磁気質検出手段とを備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a magnetic quality detection device for detecting the magnetism of the paper sheet by transporting the paper sheet printed with magnetic ink along the transport surface. A magnet unit in which different poles of magnets are connected by a yoke is disposed at a position facing each other across the transport surface, and the direction of a magnetic vector in the magnetism detection section on the transport surface is the transport surface. And magnetic field generating means adjusted so that the magnetic field strength is non-decreasing (monotonically increasing) or non-increasing (monotonically decreasing) with respect to the conveyance direction in the magnetic detection section, and provided in the magnetic detection section And a magnetic quality detecting means.
 また、本発明は、上記の発明において、前記磁界発生手段の各磁石ユニットは、前記搬送面を挟んで対向する前記磁石の磁極が異極同士となるように配置されていることを特徴とする。 Further, the present invention is characterized in that, in the above invention, each magnet unit of the magnetic field generating means is arranged so that the magnetic poles of the magnets facing each other across the transport surface are different from each other. .
 また、本発明は、上記の発明において、前記磁界発生手段は、各磁石ユニットの前記搬送面側に搬送方向について分断された複数の分割導磁板をさらに備えており、前記磁気質検出手段は、前記分割導磁板に対応する位置であって、前記分割導磁板よりも前記搬送面寄りに設けられていることを特徴とする。 Further, the present invention is the above invention, wherein the magnetic field generation means further includes a plurality of divided magnetic guide plates divided in the transport direction on the transport surface side of each magnet unit, and the magnetic quality detection means The position corresponding to the divided magnetic guide plate is provided closer to the conveying surface than the divided magnetic guide plate.
 また、本発明は、上記の発明において、前記磁界発生手段は、前記分割導磁板の搬送方向における位置を調整する位置調整機構をさらに備えたことを特徴とする。 Further, the present invention is characterized in that, in the above-mentioned invention, the magnetic field generating means further comprises a position adjusting mechanism for adjusting a position of the divided magnetic guiding plate in the transport direction.
 また、本発明は、上記の発明において、前記磁界発生手段は、一方の前記磁石ユニットの前記搬送面側に1つの導磁板をさらに備えており、前記磁気質検出手段は、前記導磁板よりも前記搬送面寄りに設けられていることを特徴とする。 Further, the present invention is the above invention, wherein the magnetic field generation means further includes one magnetic guide plate on the transport surface side of one of the magnet units, and the magnetic quality detection means includes the magnetic guide plate. It is provided closer to the transport surface than the above.
 また、本発明は、上記の発明において、前記磁界発生手段は、導磁率および/または板厚が異なる前記導磁板を用いることで前記搬送面と前記一方の磁石ユニットとの距離を調整することを特徴とする。 Further, the present invention is the above invention, wherein the magnetic field generating means adjusts a distance between the transport surface and the one magnet unit by using the magnetic guide plates having different magnetic conductivities and / or plate thicknesses. It is characterized by.
 本発明によれば、磁石の異極間をヨークで連結した磁石ユニットを、搬送面を挟んで対向する位置にそれぞれ配置しており、搬送面における磁気検出区間において磁気ベクトルの向きが搬送面と垂直であり、かつ、磁界強度が磁気検出区間における搬送向きについて非減少または非増加となるように調整された磁界発生手段と、検出区間に設けられた磁気質検出手段とを備えることとしたので、紙葉類を磁力線の向きが紙葉類の垂線方向となる位置で搬送することによって、磁気インクの保磁力特性の差異を精度良く検出することができるという効果を奏する。 According to the present invention, the magnet units in which the different poles of the magnet are connected by the yoke are arranged at positions facing each other across the transport surface, and the direction of the magnetic vector in the magnetism detection section on the transport surface is the same as the transport surface. Since the magnetic field generating means that is vertical and adjusted so that the magnetic field intensity is not decreased or not increased with respect to the conveyance direction in the magnetic detection section, and the magnetic quality detection means provided in the detection section are provided. By transporting the paper sheet at a position where the direction of the magnetic force line is in the perpendicular direction of the paper sheet, it is possible to accurately detect the difference in coercive force characteristics of the magnetic ink.
 また、本発明によれば、磁界発生手段の各磁石ユニットは、搬送面を挟んで対向する磁石の磁極が異極同士となるように配置されていることとしたので、磁石ユニット間に閉磁路を構成することで、磁力線の向きを紙葉類の垂線方向にすることができるという効果を奏する。 Further, according to the present invention, each magnet unit of the magnetic field generating means is arranged so that the magnetic poles of the magnets facing each other across the transport surface are different from each other. By configuring this, there is an effect that the direction of the lines of magnetic force can be made the normal direction of the paper sheet.
 また、本発明によれば、磁界発生手段は、各磁石ユニットの搬送面側に搬送方向について分断された複数の分割導磁板をさらに備えており、磁気質検出手段は、分割導磁板に対応する位置であって、分割導磁板よりも搬送面寄りに設けられていることとしたので、分割導磁板を用いることで、磁石ユニット間の磁界強度をステップ状に変化させることができ、これにより、磁気質検出手段の設置ずれの許容範囲を広げることができるという効果を奏する。 Further, according to the present invention, the magnetic field generating means further includes a plurality of divided magnetic guiding plates divided in the conveying direction on the conveying surface side of each magnet unit, and the magnetic quality detecting means is provided on the divided magnetic guiding plates. Since the corresponding position is provided closer to the conveyance surface than the divided magnetic guide plate, the magnetic field strength between the magnet units can be changed stepwise by using the divided magnetic guide plate. Thus, there is an effect that it is possible to widen the allowable range of the displacement of the magnetic quality detection means.
 また、本発明によれば、磁界発生手段は、分割導磁板の搬送方向における位置を調整する位置調整機構をさらに備えることとしたので、磁石ユニット間の磁界強度を調整することができるという効果を奏する。 In addition, according to the present invention, the magnetic field generating means further includes a position adjusting mechanism that adjusts the position of the divided magnetic guide plate in the transport direction, so that the magnetic field strength between the magnet units can be adjusted. Play.
 また、本発明によれば、磁界発生手段は、一方の磁石ユニットの搬送面側に1つの導磁板をさらに備えており、磁気質検出手段は、導磁板よりも搬送面寄りに設けられていることとしたので、一方の磁石ユニットに1枚板の導磁板を用いることで、磁力線の向きが紙葉類の垂線方向となる位置を、かかる磁石ユニット寄りに変更することができるという効果を奏する。 Further, according to the present invention, the magnetic field generating means further includes one magnetic guide plate on the transport surface side of one magnet unit, and the magnetic quality detection means is provided closer to the transport surface than the magnetic guide plate. By using a single magnetic guide plate for one magnet unit, it is possible to change the position where the direction of the magnetic force line is in the direction perpendicular to the paper sheet to the magnet unit. There is an effect.
 また、本発明によれば、磁界発生手段は、導磁率および/または板厚が異なる導磁板を用いることで搬送面と一方の磁石ユニットとの距離を調整することとしたので、磁力線の向きが紙葉類の垂線方向となる位置を詳細に調整することができるという効果を奏する。 Further, according to the present invention, the magnetic field generating means adjusts the distance between the transport surface and one of the magnet units by using magnetic plates having different magnetic conductivities and / or plate thicknesses. There is an effect that the position in the perpendicular direction of the paper sheet can be adjusted in detail.
図1は、実施例1に係る磁気質検出装置の概要を示す図である。FIG. 1 is a diagram illustrating an outline of the magnetic quality detection device according to the first embodiment. 図2は、実施例1に係る磁気質検出装置が発生する磁力線および磁界強度分布を示す図である。FIG. 2 is a diagram illustrating lines of magnetic force and magnetic field strength distribution generated by the magnetic quality detection apparatus according to the first embodiment. 図3は、硬磁性インクおよび軟磁性インクの飽和磁化曲線およびMRセンサによる検出値を示す図である。FIG. 3 is a diagram showing saturation magnetization curves of hard magnetic ink and soft magnetic ink and values detected by the MR sensor. 図4は、実施例2に係る磁気質検出装置の概要を示す図である。FIG. 4 is a diagram illustrating an outline of the magnetic quality detection device according to the second embodiment. 図5は、実施例2に係る磁気質検出装置の磁力線分布を示す図である。FIG. 5 is a diagram illustrating a magnetic force line distribution of the magnetic quality detection device according to the second embodiment. 図6は、導磁板の厚みおよび導磁率と磁力線変曲点の位置との関係を示す図である。FIG. 6 is a diagram showing the relationship between the thickness and magnetic permeability of the magnetic guide plate and the position of the magnetic field inflection point. 図7は、実施例2に係る磁気質検出装置の変形例を示す図である。FIG. 7 is a diagram illustrating a modification of the magnetic quality detection device according to the second embodiment. 図8は、実施例3に係る磁気質検出装置の概要を示す図である。FIG. 8 is a diagram illustrating an outline of the magnetic quality detection device according to the third embodiment. 図9は、実施例3に係る磁気質検出装置が発生する磁力線および磁界強度分布を示す図である。FIG. 9 is a diagram illustrating lines of magnetic force and magnetic field strength distribution generated by the magnetic quality detection device according to the third embodiment. 図10は、最上流側の分割導磁板を移動した場合における磁界強度分布の変化を示す図である。FIG. 10 is a diagram showing a change in the magnetic field strength distribution when the uppermost divided magnetic guide plate is moved. 図11は、最下流側の分割導磁板を移動した場合における磁界強度分布の変化を示す図である。FIG. 11 is a diagram illustrating a change in magnetic field strength distribution when the most downstream divided magnetic guide plate is moved. 図12は、分割導磁板配置の変形例を示す図である。FIG. 12 is a diagram showing a modified example of the arrangement of the divided magnetic guide plates. 図13は、双方向搬送に対応した磁気質検出装置その1の構成および磁界強度分布を示す図である。FIG. 13 is a diagram showing the configuration and magnetic field strength distribution of the magnetic quality detection apparatus 1 that supports bidirectional conveyance. 図14は、双方向搬送に対応した磁気質検出装置その2の構成および磁界強度分布を示す図である。FIG. 14 is a diagram showing the configuration and magnetic field strength distribution of the magnetic quality detection apparatus 2 that supports bidirectional conveyance. 図15は、紙葉類押さえ機構のバリエーションを示す図である。FIG. 15 is a diagram showing a variation of the paper sheet pressing mechanism.
符号の説明Explanation of symbols
 100 磁気質検出装置
 101 搬送方向
 110 上部ユニット
 111 ヨーク
 112、113 磁石
 120 下部ユニット
 121 ヨーク
 122、123 磁石
 124 基板
 125 MRセンサ(MR1)
 126 MRセンサ(MR2)
 200 磁気質検出装置
 210 上部ユニット
 211 ヨーク
 212、213 磁石
 220 下部ユニット
 221 ヨーク
 222、223 磁石
 224 基板
 225 MRセンサ(MR1)
 226 MRセンサ(MR2)
 227 導磁板
 300 磁気質検出装置
 310 上部ユニット
 311 ヨーク
 312、313 磁石
 314a、314b、314c、314d 分割導磁板
 320 下部ニット
 321 ヨーク
 322、323 磁石
 324a、324b、324c、324d 分割導磁板
 325 基板
 326 MRセンサ(MR1)
 327 MRセンサ(MR2)
DESCRIPTION OF SYMBOLS 100 Magnetic quality detection apparatus 101 Conveyance direction 110 Upper unit 111 Yoke 112, 113 Magnet 120 Lower unit 121 Yoke 122, 123 Magnet 124 Substrate 125 MR sensor (MR1)
126 MR sensor (MR2)
200 Magnetic quality detection apparatus 210 Upper unit 211 Yoke 212, 213 Magnet 220 Lower unit 221 Yoke 222, 223 Magnet 224 Substrate 225 MR sensor (MR1)
226 MR sensor (MR2)
227 Magnetic guide plate 300 Magnetic quality detection device 310 Upper unit 311 Yoke 312, 313 Magnet 314a, 314b, 314c, 314d Split magnetic guide plate 320 Lower knit 321 York 322, 323 Magnet 324a, 324b, 324c, 324d Split magnetic guide plate 325 Substrate 326 MR sensor (MR1)
327 MR sensor (MR2)
 以下に、添付図面を参照して、本発明に係る磁気質検出装置の好適な実施例を詳細に説明する。なお、実施例1では、搬送路を挟んで対称な位置に磁石ユニットをそれぞれ配置する場合について、実施例2では、一方の磁石ユニットの搬送路側に1枚板の導磁板を配置する場合について、実施例3では、双方の磁石ユニットの搬送路側に搬送方向について分断された複数の分割導磁板をそれぞれ配置する場合について、それぞれ説明することとする。 Hereinafter, preferred embodiments of a magnetic quality detection device according to the present invention will be described in detail with reference to the accompanying drawings. In the first embodiment, the magnet units are respectively arranged at symmetrical positions across the conveyance path. In the second embodiment, the single magnetic guide plate is arranged on the conveyance path side of one magnet unit. In the third embodiment, a case where a plurality of divided magnetic guide plates divided in the transport direction are arranged on the transport path side of both magnet units will be described.
 図1は、実施例1に係る磁気質検出装置100の概要を示す図である。なお、同図に示すように、実施例1に係る磁気質検出装置100は、搬送路の上方に設けられた上部ユニット110と、搬送路の下方に設けられた下部ユニット120とから構成される。 FIG. 1 is a diagram illustrating an outline of the magnetic quality detection device 100 according to the first embodiment. As shown in the figure, the magnetic quality detection apparatus 100 according to the first embodiment includes an upper unit 110 provided above the conveyance path and a lower unit 120 provided below the conveyance path. .
 上部ユニット110は、搬送路側に耐摩耗性素材を付与したハウジング内に、磁石112と磁石113とをヨーク111で連結した磁界発生部(磁界発生手段)を有している。ここで、ヨーク111は、たとえば、パーマロイのような導磁率が高い素材で構成された部材である。 The upper unit 110 has a magnetic field generation unit (magnetic field generation means) in which a magnet 112 and a magnet 113 are connected by a yoke 111 in a housing provided with a wear-resistant material on the conveyance path side. Here, the yoke 111 is a member made of a material having a high magnetic conductivity such as permalloy, for example.
 また、同図に示すように、上部ユニット110内の磁石112および磁石113は、ハウジングの下面に沿って設けられており、搬送方向101の上流側には磁石112が、下流側には磁石113が、それぞれ配置されている。なお、磁石112および磁石113については、永久磁石で構成することとしてもよいし、電磁石として構成することとしてもよい。 Further, as shown in the figure, the magnet 112 and the magnet 113 in the upper unit 110 are provided along the lower surface of the housing, and the magnet 112 is upstream in the transport direction 101 and the magnet 113 is downstream. Are arranged. Magnet 112 and magnet 113 may be configured as permanent magnets or as electromagnets.
 下部ユニット120は、搬送路側に耐摩耗性素材を付与したハウジング内に、磁石122と磁石123とをヨーク121で連結した磁界発生部(磁界発生手段)を有している。また、同図に示すように、下部ユニット120内の磁石122および磁石123は、ハウジングの上面に向かって設けられており、搬送方向101の上流側には磁石122が、下流側には磁石123が、それぞれ配置されている。なお、磁石122および磁石123についても、磁石112および磁石113と同様に、永久磁石で構成することとしてもよいし、電磁石として構成することとしてもよい。 The lower unit 120 has a magnetic field generating unit (magnetic field generating means) in which a magnet 122 and a magnet 123 are connected by a yoke 121 in a housing provided with a wear-resistant material on the conveyance path side. Further, as shown in the figure, the magnet 122 and the magnet 123 in the lower unit 120 are provided toward the upper surface of the housing, and the magnet 122 is upstream in the transport direction 101 and the magnet 123 is downstream. Are arranged. Note that the magnet 122 and the magnet 123 may also be configured as permanent magnets or electromagnets, similarly to the magnets 112 and 113.
 また、下部ユニット120の内部には、ハウジングの上面に沿って磁気質検出部(磁気質検出手段)が設けられている。この磁気質検出部は、同図に示すように、基板124上に、MR(MagnetoResistive)センサ(MR1)125と、MRセンサ(MR2)126とを設けることで構成されている。ここでMRセンサとは、磁界強度に応じて抵抗値が変化するセンサのことを指す。なお、本実施例1では、MRセンサを用いる場合について説明するが、ホールセンサ、磁気インピーダンスセンサ、フラックスゲートセンサ等を用いることとしてもよい。 In the lower unit 120, a magnetic quality detection unit (magnetic quality detection means) is provided along the upper surface of the housing. As shown in the figure, the magnetic quality detection unit is configured by providing an MR (MagnetoResistive) sensor (MR1) 125 and an MR sensor (MR2) 126 on a substrate 124. Here, the MR sensor refers to a sensor whose resistance value changes in accordance with the magnetic field strength. In the first embodiment, a case where an MR sensor is used will be described. However, a Hall sensor, a magnetic impedance sensor, a fluxgate sensor, or the like may be used.
 同図に示したように、上部ユニット110の磁石112と、下部ユニット120の磁石122とは、搬送路を挟んで対向している。また、上部ユニット110の磁石113と、下部ユニット120の磁石123とは、搬送路を挟んで対向している。このように、上部ユニット110と、下部ユニット120とは、搬送路をエアギャップとして閉磁路を形成している。以下では、かかる閉磁路についてさらに詳細に説明する。 As shown in the figure, the magnet 112 of the upper unit 110 and the magnet 122 of the lower unit 120 face each other across the transport path. Further, the magnet 113 of the upper unit 110 and the magnet 123 of the lower unit 120 are opposed to each other across the conveyance path. Thus, the upper unit 110 and the lower unit 120 form a closed magnetic path with the conveyance path as an air gap. Hereinafter, the closed magnetic circuit will be described in more detail.
 図2は、実施例1に係る磁気質検出装置100が発生する磁力線および磁界強度分布を示す図である。なお、同図の(A)には、磁気質検出装置100が発生する磁力線を、同図の(B)には、磁界強度分布を、それぞれ示している。 FIG. 2 is a diagram illustrating magnetic field lines and magnetic field strength distribution generated by the magnetic quality detection device 100 according to the first embodiment. In addition, (A) of the same figure shows the magnetic force line which the magnetic quality detection apparatus 100 generate | occur | produces, (B) of the same figure each shows magnetic field strength distribution.
 図2の(A)に示したように、上部ユニット110の磁石112は、搬送路側がS極でヨーク111側がN極であり、下部ユニット120の磁石122は、搬送路側がN極でヨーク121側がS極となっている。また、上部ユニット110の磁石113は、搬送路側がN極でヨーク111側がS極であり、下部ユニット120の磁石123は、搬送路側がS極でヨーク121側がN極となっている。 As shown in FIG. 2A, the magnet 112 of the upper unit 110 has an S pole on the conveyance path side and an N pole on the yoke 111 side, and the magnet 122 of the lower unit 120 has an N pole on the conveyance path side and a yoke 121. The side is the S pole. The magnet 113 of the upper unit 110 has an N pole on the conveyance path side and an S pole on the yoke 111 side, and the magnet 123 of the lower unit 120 has an S pole on the conveyance path side and an N pole on the yoke 121 side.
 このように、各磁石ユニット(上部ユニット110および下部ユニット120)は、対向する磁石ユニットの磁石と異極同士が向き合うように設けられているので、各磁力線は、対向する上部ユニット110および下部ユニット120の中間点で搬送ライン21と垂直となる。ここで、搬送ライン21とは、搬送される紙葉類が通過する位置を指しており、搬送ライン21の矢印の向きは、搬送方向をあらわしている。 In this way, each magnet unit (upper unit 110 and lower unit 120) is provided so that the magnets of the opposing magnet units and the opposite poles face each other. At the midpoint of 120, the transfer line 21 is perpendicular. Here, the transport line 21 indicates a position through which the transported paper sheet passes, and the direction of the arrow of the transport line 21 indicates the transport direction.
 すなわち、同図に示す搬送ライン21上では、磁力線のX方向成分は0となり、Y方向成分のみとなるので、紙葉類をY方向についてのみ磁化させることができる。したがって、被検体(紙葉類)の磁化コントロールを確実に行うことが可能となり、保磁力検知の精度を向上させることができる。 That is, on the transport line 21 shown in the figure, the X-direction component of the magnetic field lines becomes 0 and only the Y-direction component, so that the paper sheets can be magnetized only in the Y direction. Therefore, it is possible to reliably control the magnetization of the subject (paper sheets) and improve the accuracy of coercive force detection.
 なお、MRセンサ(MR1)125およびMRセンサ(MR2)126は、同図に示すように、上部ユニット110と下部ユニット120とで挟まれた搬送路の搬送ライン21近辺に配置される。このようにすることで、Y方向成分のみで磁化された紙葉類の残留磁化を高精度に取得することができる。 The MR sensor (MR1) 125 and the MR sensor (MR2) 126 are disposed in the vicinity of the conveyance line 21 on the conveyance path sandwiched between the upper unit 110 and the lower unit 120, as shown in FIG. By doing in this way, the residual magnetization of the paper sheets magnetized only by the Y direction component can be acquired with high accuracy.
 また、同図の(B)に示したように、上部ユニット110と下部ユニット120とで形成される閉磁路における磁界強度は、同図に示す位置23/位置26間で、変曲点のない非減少の曲線22としてあらわされる。 Further, as shown in (B) of the figure, the magnetic field strength in the closed magnetic circuit formed by the upper unit 110 and the lower unit 120 has no inflection point between the positions 23/26 shown in the figure. This is represented as a non-decreasing curve 22.
 具体的には、曲線22は、点22aから点22dにおいて変曲点を有しておらず、単調に増加している。このように、飽和磁化曲線に沿って非減少となるように磁界強度を変化させることで、点22aで飽和磁化させた紙葉類の残留磁化を精度良く検出することが可能となる。 Specifically, the curve 22 does not have an inflection point from the point 22a to the point 22d, and increases monotonously. In this way, by changing the magnetic field intensity so as not to decrease along the saturation magnetization curve, it becomes possible to accurately detect the residual magnetization of the paper sheets saturated and magnetized at the point 22a.
 ここで、MRセンサ(MR1)125およびMRセンサ(MR2)126は、同図に示す位置24および位置25にそれぞれ配置されているので、非減少区間(点22a/点22d間)に含まれる点22bおよび点22cの残留磁化を検出することになる。 Here, since the MR sensor (MR1) 125 and the MR sensor (MR2) 126 are respectively arranged at the position 24 and the position 25 shown in the figure, the points included in the non-decreasing section (between the points 22a and 22d). The residual magnetization at 22b and point 22c is detected.
 なお、MRセンサ(MR1)125の位置24およびMRセンサ(MR2)126の位置25は、点22a/点22d間の任意の位置とすることができる。また、同図では、2つのMRセンサで2点の残留磁化を検出する場合について示しているが、MRセンサの数量を3つ以上とすることとしてもよい。 It should be noted that the position 24 of the MR sensor (MR1) 125 and the position 25 of the MR sensor (MR2) 126 can be any positions between the points 22a / 22d. Moreover, although the figure shows the case where two MR sensors detect residual magnetization at two points, the number of MR sensors may be three or more.
 次に、MRセンサ(MR1)125による検出値と、MRセンサ(MR2)126による検出値との比較による紙葉類の真偽判定例について図3を用いて説明する。図3は、硬磁性インクおよび軟磁性インクの飽和磁化曲線およびMRセンサによる検出値を示す図である。なお、同図の(A)には、飽和磁化曲線を、同図の(B)には、MRセンサによる検出値を、それぞれ示している。 Next, an example of determining the authenticity of a sheet by comparing the detection value by the MR sensor (MR1) 125 and the detection value by the MR sensor (MR2) 126 will be described with reference to FIG. FIG. 3 is a diagram showing saturation magnetization curves of hard magnetic ink and soft magnetic ink and values detected by the MR sensor. Note that (A) in the figure shows the saturation magnetization curve, and (B) in the figure shows the detection value by the MR sensor.
 図3の(A)に示したように、たとえば、位置23の点32aで飽和磁化状態となった軟磁性インクは、位置24(MRセンサ(MR1)125の取付位置)の点32bで、MRセンサ(MR1)125によって残留磁化を検出され、位置25(MRセンサ(MR2)126の取付位置)の点32cで、MRセンサ(MR2)126によって残留磁化を検出される。 As shown in FIG. 3A, for example, the soft magnetic ink that is in a saturated magnetization state at the point 32a at the position 23 is MR at the point 32b at the position 24 (attachment position of the MR sensor (MR1) 125). The residual magnetization is detected by the sensor (MR1) 125, and the residual magnetization is detected by the MR sensor (MR2) 126 at a point 32c at the position 25 (attachment position of the MR sensor (MR2) 126).
 また、位置23の点31aで飽和磁化状態となった硬磁性インクは、位置24(MRセンサ(MR1)125の取付位置)の点31bで、MRセンサ(MR1)125によって残留磁化を検出され、位置25(MRセンサ(MR2)126の取付位置)の点31cで、MRセンサ(MR2)126によって残留磁化を検出される。ここで、位置25(MRセンサ(MR2)126の取付位置)は、真正な紙葉類の場合に、点31cにおける磁化強度が0となる位置に調整されている。 Also, the hard magnetic ink that has been in a saturated magnetization state at the point 31a at the position 23 has its residual magnetization detected by the MR sensor (MR1) 125 at the point 31b at the position 24 (attachment position of the MR sensor (MR1) 125). The residual magnetization is detected by the MR sensor (MR2) 126 at a point 31c at the position 25 (attachment position of the MR sensor (MR2) 126). Here, the position 25 (attachment position of the MR sensor (MR2) 126) is adjusted to a position where the magnetization intensity at the point 31c becomes 0 in the case of a genuine paper sheet.
 したがって、MRセンサ(MR2)126は、真正な紙葉類の場合には、硬磁性インクの磁気パターンを検出せず、真正ではない紙葉類の場合には、硬磁性インクの磁気パターンを検出することになる。 Therefore, the MR sensor (MR2) 126 does not detect the magnetic pattern of the hard magnetic ink in the case of an authentic paper sheet, and detects the magnetic pattern of the hard magnetic ink in the case of an unauthentic paper sheet. Will do.
 たとえば、同図の(B)に示したように、真正な紙葉類の磁性インクパターンが、搬送ライン21と交わるように、軟磁性インクのラインが3つ、硬磁性インクのラインが2つとなるように、紙葉類に付されているとする。 For example, as shown in FIG. 5B, there are three soft magnetic ink lines and two hard magnetic ink lines so that the magnetic ink pattern of a genuine paper sheet intersects the transport line 21. Suppose that it is attached to paper sheets.
 この場合、位置24に配置されたMRセンサ(MR1)125の検出値は、同図の曲線33のようになる。すなわち、MRセンサ(MR1)125では、軟磁性インクによる残留磁化と、硬磁性インクによる残留磁化(同図の33a参照)とを双方とも検出する。 In this case, the detected value of the MR sensor (MR1) 125 arranged at the position 24 is as shown by a curve 33 in FIG. In other words, the MR sensor (MR1) 125 detects both the residual magnetization caused by the soft magnetic ink and the residual magnetization caused by the hard magnetic ink (see 33a in the figure).
 一方、位置25に配置されたMRセンサ(MR2)126の検出値は、同図の曲線34のようになる。すなわち、MRセンサ(MR2)126では、軟磁性インクによる残留磁化については検出するものの、硬磁性インクによる残留磁化(同図の34a参照)については検出しない。 On the other hand, the detection value of the MR sensor (MR2) 126 arranged at the position 25 is as shown by a curve 34 in FIG. That is, the MR sensor (MR2) 126 detects the residual magnetization due to the soft magnetic ink, but does not detect the residual magnetization due to the hard magnetic ink (see 34a in the figure).
 このように、真正な紙葉類については、硬磁性インクの残留磁化が0となる位置にMRセンサ(MR2)126を配置することで、紙葉類の真偽を判別することができる。ここで、本実施例1に係る磁気質検出装置100は、紙葉類の搬送ラインにおいて、磁力線のX成分が0となるように、すなわち、磁力線が搬送ラインと直交するように、上部ユニット110と下部ユニット120とで閉磁路を形成することとしているので、硬磁性インクの残留磁化が0となる位置を正確に見積もることができる。 Thus, for authentic paper sheets, the authenticity of the paper sheets can be determined by arranging the MR sensor (MR2) 126 at a position where the residual magnetization of the hard magnetic ink becomes zero. Here, in the magnetic quality detection apparatus 100 according to the first embodiment, the upper unit 110 is configured so that the X component of the magnetic force lines becomes 0 in the paper sheet conveyance line, that is, the magnetic field lines are orthogonal to the conveyance line. Since the closed magnetic path is formed by the lower unit 120, the position where the residual magnetization of the hard magnetic ink becomes 0 can be accurately estimated.
 上述してきたように、実施例1では、紙葉類の搬送ラインについて対称位置に上部ユニットと、下部ユニットとを配置し、上部ユニットおよび下部ユニットとで閉磁路を構成することで、搬送ラインにおける磁力線が、搬送される紙葉類と直交するようにした。したがって、紙葉類と平行向きの磁力線成分を排除して紙葉類と直交向きの磁力線成分のみで紙葉類の磁化を行うので、異なる磁性特性を有するインクの残留磁化を正確に取得することができる。これにより、紙葉類の真偽判別を高精度に行うことが可能となる。 As described above, in the first embodiment, the upper unit and the lower unit are arranged at symmetrical positions with respect to the paper sheet conveyance line, and the closed magnetic path is configured by the upper unit and the lower unit. The magnetic field lines were made to be orthogonal to the paper sheets being conveyed. Therefore, the magnetic field component parallel to the paper sheet is eliminated and the paper sheet is magnetized only by the magnetic field component orthogonal to the paper sheet, so that the residual magnetization of ink having different magnetic characteristics can be accurately acquired. Can do. As a result, the authenticity of the paper sheet can be determined with high accuracy.
 なお、実施例1では、異なる磁性特定を有するインクの残留磁化を検出し、検出した残留磁化に基づいて紙葉類の真偽を判別する場合について示したが、図3に示したように、実施例1に係る磁気質検出装置では、飽和磁化曲線に沿って磁化強度を変化させているので、絶対的な磁気量を検出することもできる。したがって、絶対的な磁気量に基づく真偽判別を行うことも可能である。 In the first embodiment, the residual magnetization of the ink having different magnetic characteristics is detected and the authenticity of the paper sheet is determined based on the detected residual magnetization. However, as shown in FIG. In the magnetic quality detection apparatus according to the first embodiment, since the magnetization intensity is changed along the saturation magnetization curve, an absolute magnetic quantity can be detected. Therefore, it is possible to perform authenticity determination based on an absolute magnetic quantity.
 ところで、上述した実施例1では、紙葉類の搬送ラインについて対称位置に磁石ユニットをそれぞれ配置した場合について示したが、一方の磁石ユニットの搬送路側に1枚板の導磁板を配置することで、搬送ラインと磁石ユニットとの距離を調整することとしてもよい。そこで、以下に示す実施例2では、一方の磁石ユニットの搬送路側に1枚板の導磁板を配置する場合について説明することとする。 By the way, in Example 1 mentioned above, although it showed about the case where a magnet unit was each arrange | positioned in the symmetrical position about the conveyance line of paper sheets, it arrange | positions a single-sheet magnetism guide plate to the conveyance path side of one magnet unit. Thus, the distance between the transfer line and the magnet unit may be adjusted. Therefore, in Example 2 described below, a case where a single plate of a magnetic guide plate is disposed on the conveyance path side of one magnet unit will be described.
 図4は、実施例2に係る磁気質検出装置200の概要を示す図である。同図に示すように、実施例2に係る磁気質検出装置200は、搬送路の上方に設けられた上部ユニット210と、搬送路の下方に設けられた下部ユニット220とから構成されるが、下部ユニット220が導磁板227を備える点で、実施例1に係る磁気質検出装置100とは異なる。 FIG. 4 is a diagram illustrating an outline of the magnetic quality detection device 200 according to the second embodiment. As shown in the figure, the magnetic quality detection apparatus 200 according to the second embodiment includes an upper unit 210 provided above the conveyance path and a lower unit 220 provided below the conveyance path. The lower unit 220 is different from the magnetic quality detection apparatus 100 according to the first embodiment in that the lower unit 220 includes a magnetic guide plate 227.
 なお、上部ユニット210は、実施例1に係る磁気質検出装置100と同様に、搬送路側に耐摩耗性素材を付与したハウジング内に、ヨーク211と、磁石212と、磁石213とを有している。また、下部ユニット220は、搬送路側に耐摩耗性素材を付与したハウジング内に、ヨーク221と、磁石222と、磁石223とを有しており、MRセンサ(MR1)225およびMRセンサ(MR2)226を設けた基板224と、磁石222および磁石223との間に、上記した導磁板227を備えている。 The upper unit 210 includes a yoke 211, a magnet 212, and a magnet 213 in a housing in which a wear-resistant material is provided on the conveyance path side, similarly to the magnetic quality detection device 100 according to the first embodiment. Yes. The lower unit 220 includes a yoke 221, a magnet 222, and a magnet 223 in a housing provided with a wear-resistant material on the conveyance path side, and an MR sensor (MR1) 225 and an MR sensor (MR2). The above-described magnetic guide plate 227 is provided between the substrate 224 provided with H.226, and the magnet 222 and the magnet 223.
 ここで、導磁板227は、下部ユニット220の磁石222あるいは磁石223と接触しないように取り付けられる。その理由は、導磁板227と磁石(磁石222または磁石223)とを接触させると、これらの部材間で閉じた磁気回路が形成されてしまい、上部ユニット210/下部ユニット220間の磁界が形成されなくなってしまうためである。 Here, the magnetic guide plate 227 is attached so as not to contact the magnet 222 or the magnet 223 of the lower unit 220. The reason is that when the magnetic guide plate 227 and the magnet (magnet 222 or magnet 223) are brought into contact with each other, a closed magnetic circuit is formed between these members, and a magnetic field is formed between the upper unit 210 and the lower unit 220. Because it will not be done.
 実施例2に係る磁気質検出装置200は、かかる導磁板227を備えることによって、磁力線が被検体(紙葉類)と直交するラインの位置を、下部ユニット220側に引き寄せることができる。すなわち、実施例2に係る磁気質検出装置200によれば、磁力線がY軸成分のみとなる搬送ラインの位置を、上部ユニット210と下部ユニット220との中間点とする必要がない。 The magnetic quality detection apparatus 200 according to the second embodiment includes the magnetic guide plate 227, so that the position of the line where the magnetic lines of force are perpendicular to the subject (paper sheet) can be drawn toward the lower unit 220 side. That is, according to the magnetic quality detection apparatus 200 according to the second embodiment, the position of the conveyance line where the magnetic force line is only the Y-axis component does not need to be an intermediate point between the upper unit 210 and the lower unit 220.
 次に、実施例2に係る磁気質検出装置200の磁力線分布について、図5を用いて説明する。図5は、実施例2に係る磁気質検出装置200の磁力線分布を示す図である。なお、同図の(A)には、実施例2に係る磁気質検出装置200の磁力線分布を、同図の(B)には、参考のため、実施例1に係る磁気質検出装置100の磁力線分布を、それぞれ示している。 Next, the magnetic force line distribution of the magnetic quality detection device 200 according to the second embodiment will be described with reference to FIG. FIG. 5 is a diagram illustrating a magnetic force line distribution of the magnetic quality detection device 200 according to the second embodiment. Incidentally, (A) in the figure shows the magnetic field line distribution of the magnetic quality detection device 200 according to the second embodiment, and (B) in the same figure shows the magnetic field detection device 100 according to the first embodiment for reference. Magnetic field line distribution is shown respectively.
 図5の(A)に示したように、実施例2に係る磁気質検出装置200では、各磁力線は、下部ユニット220寄りの位置で、Y軸成分のみ(Y軸と平行)となる。したがって、搬送ライン51を、下部ユニット220寄りの位置に設定することができる。ここで、搬送ライン51とは、搬送される紙葉類が通過する位置を指しており、搬送ライン51の矢印の向きは、搬送方向をあらわしている。 As shown in FIG. 5A, in the magnetic quality detection apparatus 200 according to the second embodiment, each magnetic field line is only near the lower unit 220 and has only a Y-axis component (parallel to the Y-axis). Therefore, the transport line 51 can be set at a position closer to the lower unit 220. Here, the transport line 51 indicates a position through which the transported paper sheet passes, and the direction of the arrow of the transport line 51 indicates the transport direction.
 図5の(B)に示したように、実施例1に係る磁気質検出装置100における搬送ライン21は、上部ユニット110と下部ユニット120との中間点に設ける必要があったが、実施例2に係る磁気質検出装置200における搬送ライン51は、MRセンサを有する下部ユニット220の表面に設けることができる。したがって、MRセンサによる残留磁化の計測精度を向上させることができる。 As shown in FIG. 5B, the conveyance line 21 in the magnetic quality detection device 100 according to the first embodiment needs to be provided at an intermediate point between the upper unit 110 and the lower unit 120. The conveyance line 51 in the magnetic quality detection apparatus 200 according to the above can be provided on the surface of the lower unit 220 having the MR sensor. Therefore, the measurement accuracy of residual magnetization by the MR sensor can be improved.
 ここで、実施例2に係る磁気質検出装置200では、導磁板227の厚み(T)や、導磁率(μ)を変更することで、磁力線がY軸成分のみ(Y軸と平行)となる位置を変更することが可能である。 Here, in the magnetic quality detection apparatus 200 according to the second embodiment, by changing the thickness (T) and the magnetic permeability (μ) of the magnetic guide plate 227, the magnetic field lines are only Y-axis components (parallel to the Y-axis). It is possible to change the position.
 図6は、導磁板227の厚みおよび導磁率と磁力線変曲点の位置との関係を示す図である。ここで、磁力線変曲点とは、磁力線がY軸成分のみ(Y軸と平行)となる磁力線上の点のことを指し、磁力線変曲点の位置とは、各磁力線について磁力線変曲点を結んだ線と、搬送面(ここでは、下部ユニット220の上面)との距離をあらわすものとする。なお、下部ユニット220の上面には耐摩耗性素材が付与されているものとする。 FIG. 6 is a diagram showing the relationship between the thickness and magnetic conductivity of the magnetic guide plate 227 and the position of the magnetic field inflection point. Here, the magnetic field line inflection point refers to a point on the magnetic field line where the magnetic field line is only the Y-axis component (parallel to the Y axis), and the position of the magnetic field line inflection point refers to the magnetic field line inflection point for each magnetic field line. The distance between the connected line and the conveyance surface (here, the upper surface of the lower unit 220) is represented. It is assumed that a wear-resistant material is applied to the upper surface of the lower unit 220.
 なお、同図の(A)には、上部ユニット210と、下部ユニット220との距離(クリアランス)を8.0mmとし、導磁板227と、磁石(磁石222および磁石223)との距離を0.5mmとし、導磁板227と下部ユニット220の上面との距離を1mmとした場合の磁力線を示している。また、同図の(B)には、磁力線変曲点と搬送面との距離(d)と、導磁板227の厚み(T)との関係を示すグラフを、導磁板の導磁率(μ)ごとに示している。 In FIG. 6A, the distance (clearance) between the upper unit 210 and the lower unit 220 is 8.0 mm, and the distance between the magnetic guide plate 227 and the magnets (magnet 222 and magnet 223) is 0. The line of magnetic force when the distance between the magnetic conducting plate 227 and the upper surface of the lower unit 220 is 1 mm is set to 0.5 mm. Further, (B) in the figure shows a graph showing the relationship between the distance (d) between the magnetic field inflection point and the conveying surface and the thickness (T) of the magnetic guide plate 227, and the magnetic permeability ( This is shown for each μ).
 具体的には、距離(d)と厚み(T)との関係をあらわすグラフは、導磁率(μ)が50の場合については曲線61となり、導磁率(μ)が100の場合については曲線62となり、導磁率(μ)が200の場合については曲線63となる。また、導磁率(μ)が500の場合については曲線64となり、導磁率(μ)が1000の場合については曲線65となる。 Specifically, the graph representing the relationship between the distance (d) and the thickness (T) is a curve 61 when the magnetic permeability (μ) is 50, and a curve 62 when the magnetic permeability (μ) is 100. Thus, when the magnetic permeability (μ) is 200, the curve 63 is obtained. Further, the curve 64 is obtained when the magnetic permeability (μ) is 500, and the curve 65 is obtained when the magnetic permeability (μ) is 1000.
 図6の(B)に示したように、距離(d)は、導磁率(μ)が大きいほど、また、厚み(T)が厚いほど、小さくなる傾向にある。言い換えれば、導磁率(μ)が小さく、厚み(T)が薄いほど、距離(d)は大きくなる傾向にある。 As shown in FIG. 6B, the distance (d) tends to decrease as the magnetic permeability (μ) increases and the thickness (T) increases. In other words, the distance (d) tends to increase as the magnetic permeability (μ) decreases and the thickness (T) decreases.
 このように、紙葉類の搬送面と、磁力線の変曲点とを一致させる導磁率(μ)と厚み(T)との組み合わせは多くあるが、実際には、導磁板227の薄化による割れや、厚化によるユニットサイズの増大を避けるために、導磁板227の厚み(T)を、0.3mm~2.0mm程度とすることが好ましい。 As described above, there are many combinations of the magnetic permeability (μ) and the thickness (T) for matching the sheet conveyance surface and the inflection point of the magnetic field lines. In order to avoid cracking due to sag and increase in unit size due to thickening, it is preferable that the thickness (T) of the magnetic guide plate 227 is about 0.3 mm to 2.0 mm.
 したがって、図6の(B)に示したグラフを参照すると、導磁率(μ)については、100~500程度で距離(d)が0となるように、導磁率(μ)および厚み(T)を選定することとすればよいことがわかる。このように、実施例2に係る磁気質検出装置200を用いると、磁力線の変曲点の位置を、下部ユニット220の上面付近に調整することができる。 Accordingly, referring to the graph shown in FIG. 6B, the magnetic permeability (μ) and the thickness (T) are set so that the magnetic permeability (μ) is about 100 to 500 and the distance (d) becomes zero. It can be seen that it is sufficient to select. As described above, when the magnetic quality detection device 200 according to the second embodiment is used, the position of the inflection point of the magnetic lines of force can be adjusted near the upper surface of the lower unit 220.
 ところで、図4等では、ヨーク211と、磁石212と、磁石213とで上部ユニット210とを構成し、搬送路側には、磁石212および磁石213を配置する場合について示したが、搬送路側にさらにヨークを設けることで、次に例を示すように搬送路における磁界強度を強めることとしてもよい。 4 and the like, the yoke 211, the magnet 212, and the magnet 213 constitute the upper unit 210, and the magnet 212 and the magnet 213 are arranged on the conveyance path side. By providing the yoke, the magnetic field strength in the conveyance path may be increased as shown in the following example.
 図7は、実施例2に係る磁気質検出装置200の変形例を示す図である。同図に示すように、上部ユニット210における磁石212の搬送路側には、ヨーク81がさらに設けられている。このように、ヨーク81を設けることで、下部ユニット220の磁石222との間の磁界強度を強めることができる。これにより、紙葉類500を飽和磁化させるための磁気を増強することが可能となる。ここで、搬送ライン82は、搬送される紙葉類が通過する位置を指しており、搬送ライン81の矢印の向きは、搬送方向をあらわしている。 FIG. 7 is a diagram illustrating a modification of the magnetic quality detection device 200 according to the second embodiment. As shown in the figure, a yoke 81 is further provided on the conveyance path side of the magnet 212 in the upper unit 210. Thus, by providing the yoke 81, the magnetic field strength between the lower unit 220 and the magnet 222 can be increased. Thereby, the magnetism for saturation magnetization of the paper sheet 500 can be enhanced. Here, the conveyance line 82 points to the position through which the conveyed paper sheet passes, and the direction of the arrow of the conveyance line 81 indicates the conveyance direction.
 上述してきたように、実施例2では、下部ユニットの搬送路側に1枚板の導磁板を配置することで、磁力線の変曲点の位置を下部ユニットの上面に近づけることとした。また、導磁板の厚みや導磁率を変更することで、磁力線の変曲点の位置を調整することとした。したがって、下部ユニットのMRセンサは、紙葉類の残留磁化を高精度に検出することができる。また、磁気質検出装置の装置サイズをコンパクト化することができる。 As described above, in Example 2, the position of the inflection point of the lines of magnetic force is made closer to the upper surface of the lower unit by arranging a single magnetic guide plate on the conveyance path side of the lower unit. In addition, the position of the inflection point of the lines of magnetic force was adjusted by changing the thickness of the magnetic guide plate and the magnetic permeability. Therefore, the MR sensor of the lower unit can detect the residual magnetization of the paper sheet with high accuracy. In addition, the size of the magnetic quality detection device can be reduced.
 ところで、上述した実施例2では、1枚板の導磁板を用いる場合について示したが、搬送方向について分断された複数の分割導磁板を用いることとしてもよい。そこで、以下に示す実施例3では、複数の分割導磁板を用いる場合について説明することとする。 By the way, in the above-described second embodiment, the case where a single-plate magnetic guide plate is used has been described. However, a plurality of divided magnetic guide plates divided in the transport direction may be used. Therefore, in Example 3 described below, a case where a plurality of divided magnetic guide plates are used will be described.
 図8は、実施例3に係る磁気質検出装置300の概要を示す図である。同図に示すように、実施例3に係る磁気質検出装置300は、搬送路の上方に設けられた上部ユニット310と、搬送路の下方に設けられた下部ユニット320とから構成されるが、上部ユニット310が複数の分割導磁板(314a、314b、314cおよび314d)を備え、下部ユニット320も複数の分割導磁板(324a、324b、324cおよび324d)を備える点で、実施例1に係る磁気質検出装置100とは異なる。 FIG. 8 is a diagram illustrating an outline of the magnetic quality detection device 300 according to the third embodiment. As shown in the figure, the magnetic quality detection apparatus 300 according to the third embodiment includes an upper unit 310 provided above the conveyance path and a lower unit 320 provided below the conveyance path. In the first embodiment, the upper unit 310 includes a plurality of divided magnetic guide plates (314a, 314b, 314c and 314d), and the lower unit 320 also includes a plurality of divided magnetic guide plates (324a, 324b, 324c and 324d). It differs from the magnetic quality detection apparatus 100 which concerns.
 ここで、上部ユニット310の分割導磁板314aは、下部ユニット320の分割導磁板324aと搬送路を挟んで対向しており、以下同様に、分割導磁板314bと分割導磁板324b、分割導磁板314cと分割導磁板324c、分割導磁板314dと分割導磁板324dが、それぞれ対向している。 Here, the divided magnetic guide plate 314a of the upper unit 310 is opposed to the divided magnetic guide plate 324a of the lower unit 320 across the conveyance path. Similarly, the divided magnetic guide plate 314b and the divided magnetic guide plate 324b, The divided magnetic plate 314c and the divided magnetic plate 324c, and the divided magnetic plate 314d and the divided magnetic plate 324d face each other.
 このように、複数の分割された導磁板を用いることで、上部ユニット310/下部ユニット320間の磁界強度をステップ状に変化させることができ、MRセンサの設置位置ずれの許容範囲を広げることが可能となる。 As described above, by using a plurality of divided magnetic guide plates, the magnetic field strength between the upper unit 310 and the lower unit 320 can be changed in a stepped manner, and the allowable range of the MR sensor installation position deviation can be widened. Is possible.
 なお、上部ユニット310は、搬送路側に耐摩耗性素材を付与したハウジング内に、ヨーク311と、磁石312と、磁石313とを有しており、磁石312の搬送路側には分割導磁板314aを、磁石313の搬送路側には分割導磁板314dを、それぞれ有している。また、磁石312と磁石313との間には、分割導磁板314aおよび分割導磁板314dと平行となるように、分割導磁板314bおよび分割導磁板314cを有している。 The upper unit 310 includes a yoke 311, a magnet 312, and a magnet 313 in a housing provided with a wear-resistant material on the conveyance path side. The divided magnetic guide plate 314 a is disposed on the conveyance path side of the magnet 312. Are provided with divided magnetic guide plates 314d on the conveying path side of the magnet 313, respectively. Further, between the magnet 312 and the magnet 313, there are divided magnetic guide plates 314b and divided magnetic guide plates 314c so as to be parallel to the divided magnetic guide plates 314a and 314d.
 また、下部ユニット320は、搬送路側に耐摩耗性素材を付与したハウジング内に、ヨーク321と、磁石322と、磁石323とを有しており、磁石322の搬送路側には分割導磁板324aを、磁石323の搬送路側には分割導磁板324dを、それぞれ有している。また、磁石322と磁石323との間には、分割導磁板324aおよび分割導磁板324dと平行となるように、分割導磁板324bおよび分割導磁板324cを有している。そして、下部ユニット320内の上面付近には、MRセンサ(MR1)326およびMRセンサ(MR2)327を設けた基板325を有している。 The lower unit 320 has a yoke 321, a magnet 322, and a magnet 323 in a housing provided with a wear-resistant material on the conveyance path side. The divided magnetic guide plate 324 a is disposed on the conveyance path side of the magnet 322. Are provided with divided magnetic guide plates 324d on the conveying path side of the magnet 323, respectively. Further, between the magnet 322 and the magnet 323, there are divided magnetic guide plates 324b and divided magnetic guide plates 324c so as to be parallel to the divided magnetic guide plates 324a and 324d. A substrate 325 provided with an MR sensor (MR 1) 326 and an MR sensor (MR 2) 327 is provided near the upper surface in the lower unit 320.
 なお、分割導磁板を用いる場合には、1枚板の導磁板を用いる場合と異なり、分割導磁板を各磁石と接触させて設置することが許容される。 In the case of using a split magnetic guide plate, it is allowed to install the split magnetic guide plate in contact with each magnet, unlike the case of using a single magnetic guide plate.
 図9は、実施例3に係る磁気質検出装置300が発生する磁力線および磁界強度分布を示す図である。なお、同図の(A)には、磁気質検出装置300が発生する磁力線を、同図の(B)には、磁界強度分布を、それぞれ示している。 FIG. 9 is a diagram illustrating magnetic field lines and magnetic field strength distribution generated by the magnetic quality detection device 300 according to the third embodiment. In addition, (A) in the figure shows the lines of magnetic force generated by the magnetic quality detection device 300, and (B) in the figure shows the magnetic field strength distribution.
 図9の(A)に示したように、上部ユニット310の磁石312は、搬送路側がS極でヨーク311側がN極であり、下部ユニット320の磁石322は、搬送路側がN極でヨーク321側がS極となっている。また、上部ユニット310の磁石313は、搬送路側がN極でヨーク311側がS極であり、下部ユニット320の磁石323は、搬送路側がS極でヨーク321側がN極となっている。 As shown in FIG. 9A, the magnet 312 of the upper unit 310 has an S pole on the conveyance path side and an N pole on the yoke 311 side, and the magnet 322 of the lower unit 320 has an N pole on the conveyance path side and a yoke 321. The side is the S pole. The magnet 313 of the upper unit 310 has an N pole on the conveyance path side and an S pole on the yoke 311 side, and the magnet 323 of the lower unit 320 has an S pole on the conveyance path side and an N pole on the yoke 321 side.
 このように、各磁石ユニット(上部ユニット310および下部ユニット320)は、対向する磁石ユニットの磁石と異極同士が向き合うように設けられているので、各磁力線は、対向する上部ユニット310および下部ユニット320の中間点で搬送ライン501と垂直となる。ここで、搬送ライン501とは、搬送される紙葉類が通過する位置を指しており、搬送ライン501の矢印の向きは、搬送方向をあらわしている。 In this way, each magnet unit (upper unit 310 and lower unit 320) is provided such that the magnets of the opposing magnet unit and the opposite poles face each other, so that each magnetic field line is opposed to the opposing upper unit 310 and lower unit. It becomes perpendicular to the conveyance line 501 at an intermediate point 320. Here, the transport line 501 indicates a position through which the transported paper sheet passes, and the direction of the arrow of the transport line 501 indicates the transport direction.
 すなわち、同図に示す搬送ライン501上では、磁力線のX方向成分は0となり、Y方向成分のみとなるので、紙葉類をY方向についてのみ磁化させることができる。したがって、被検体(紙葉類)の磁化コントロールを確実に行うことが可能となり、保磁力検知の精度を向上させることができる。 That is, on the transport line 501 shown in the figure, the X-direction component of the magnetic field lines becomes 0 and only the Y-direction component, so that the paper sheets can be magnetized only in the Y direction. Therefore, it is possible to reliably control the magnetization of the subject (paper sheets) and improve the accuracy of coercive force detection.
 ここで、MRセンサ(MR1)326は、分割導磁板314b/分割導磁板324b間の領域に、MRセンサ(MR2)327は、分割導磁板314c/分割導磁板324c間の領域に、それぞれ配置されている。これは、対向する分割導磁板で挟まれた領域においては、磁界強度の変化が緩やかになるためである。この点について、同図の(B)を用いてさらに詳細に説明する。 Here, the MR sensor (MR1) 326 is in a region between the divided magnetic guide plates 314b / divided magnetic guide plates 324b, and the MR sensor (MR2) 327 is in a region between the divided magnetic guide plates 314c / divided magnetic guide plates 324c. , Each is arranged. This is because the change in the magnetic field intensity becomes gentle in the region sandwiched between the opposed divided magnetic guide plates. This point will be described in more detail with reference to FIG.
 図9の(B)に示したように、上部ユニット310と下部ユニット320とで形成される閉磁路における磁界強度は、位置503よりも下流側で、変曲点のない曲線502としてあらわされる。また、位置504および位置505近辺においては、磁界強度の変化が停滞している(ステップ状となっている)。 As shown in FIG. 9B, the magnetic field strength in the closed magnetic path formed by the upper unit 310 and the lower unit 320 is expressed as a curve 502 having no inflection point on the downstream side of the position 503. Further, in the vicinity of the position 504 and the position 505, the change in the magnetic field strength is stagnant (in a step shape).
 このように、分割導磁板を用いると、各分割導磁板に対応する位置において磁界強度の変化を停滞させることができる。したがって、各MRセンサの設置位置ずれの許容範囲を広げることができる。 Thus, when the divided magnetic guide plates are used, the change in the magnetic field strength can be stagnated at the position corresponding to each divided magnetic guide plate. Therefore, it is possible to widen the allowable range of the installation position deviation of each MR sensor.
 たとえば、同図において、MRセンサ(MR1)326は、位置504に取り付けられており、点502bにおける磁界強度を取得する。しかし、MRセンサ(MR1)326の取付位置が同図の左右に多少ずれた場合であっても、磁界強度はほとんど変化しない。したがって、MRセンサ(MR1)326の取付位置を正確に位置504としなくても、位置504に設置した場合と同等の磁界強度を検出することができる。 For example, in the figure, the MR sensor (MR1) 326 is attached at the position 504, and acquires the magnetic field strength at the point 502b. However, even when the mounting position of the MR sensor (MR1) 326 is slightly shifted left and right in the figure, the magnetic field strength hardly changes. Therefore, even if the mounting position of the MR sensor (MR1) 326 is not accurately set to the position 504, it is possible to detect a magnetic field strength equivalent to that when the MR sensor (MR1) 326 is installed at the position 504.
 また、同図において、MRセンサ(MR2)327は、位置505に取り付けられており、点502cにおける磁界強度を取得するが、MRセンサ(MR2)327の取付ずれも、MRセンサ(MR1)326の場合と同様の理由から許容されることになる。 Also, in the same figure, the MR sensor (MR2) 327 is attached at a position 505 and acquires the magnetic field strength at the point 502c, but the mounting displacement of the MR sensor (MR2) 327 is also caused by the MR sensor (MR1) 326. It is allowed for the same reason as the case.
 ところで、分割導磁板を用いる場合、分割導磁板の位置を、搬送方向について上流側あるいは下流側にずらすことで、上部ユニット310/下部ユニット320間の磁界強度分布を変更することができる。そこで、以下では、図10および図11を用いて分割導磁板の移動に伴う磁界強度分布の変化について説明することとする。 By the way, when using a divided magnetic guide plate, the magnetic field strength distribution between the upper unit 310 and the lower unit 320 can be changed by shifting the position of the divided magnetic guide plate to the upstream side or the downstream side in the transport direction. Therefore, hereinafter, changes in the magnetic field strength distribution accompanying the movement of the divided magnetic guide plates will be described with reference to FIGS. 10 and 11.
 図10は、最上流側の分割導磁板(分割導磁板314aおよび分割導磁板324a)を移動した場合における磁界強度分布の変化を示す図である。なお、図10の(B)に示した場合が既定位置であり、この場合、各分割導磁板間の距離は、同図の左から、0.5mm、1.5mm、0.5mmとなる。 FIG. 10 is a diagram showing a change in magnetic field strength distribution when the most upstream divided magnetic guide plate (the divided magnetic guide plate 314a and the divided magnetic guide plate 324a) is moved. In addition, the case shown in FIG. 10B is the default position, and in this case, the distance between each divided magnetic guide plate is 0.5 mm, 1.5 mm, and 0.5 mm from the left in FIG. .
 ここで、同図に示すように、分割導磁板314aおよび分割導磁板324aには、それぞれ位置調整機構111が取り付けられている。位置調整機構111は、たとえば、ネジ111bと、ネジ111bの回転を許容しつつネジ111bの位置を固定する固定板111aと、分割導磁板314aまたは分割導磁板324aに接続されておりネジ111bの回転によって固定板111aとの相対距離を変更可能な連結部材111cとから構成される。 Here, as shown in the figure, a position adjusting mechanism 111 is attached to each of the divided magnetic guide plates 314a and the divided magnetic guide plates 324a. The position adjusting mechanism 111 is connected to, for example, a screw 111b, a fixed plate 111a that fixes the position of the screw 111b while allowing the screw 111b to rotate, and the divided magnetic guide plate 314a or the divided magnetic guide plate 324a. And a connecting member 111c that can change the relative distance from the fixed plate 111a by the rotation.
 また、同図の(A)では、分割導磁板314aと分割導磁板314bとの間隔および分割導磁板324aと分割導磁板324bとの間隔を、1.0mmとした場合を、同図の(C)では、同じく0.2mmとした場合を、同図の(D)では、同じく0.0mmとした場合を、それぞれ示している。 Further, in (A) of the figure, the case where the distance between the divided magnetic guide plates 314a and 314b and the distance between the divided magnetic guide plates 324a and 324b is 1.0 mm is the same. (C) in the figure shows the same case of 0.2 mm, and (D) in the same figure shows the same case of 0.0 mm.
 そして、同図の(E)には、(A)~(D)にそれぞれ対応する磁界強度の変化を示す曲線を示している。ここで、曲線511は(A)に、曲線512は(B)に、曲線513は(C)に、曲線514は(D)に、それぞれ対応している。このように、分割導磁板の間隔を変更することで、磁界強度分布を調整することができる。 (E) in the figure shows curves indicating changes in magnetic field intensity corresponding to (A) to (D), respectively. Here, the curve 511 corresponds to (A), the curve 512 corresponds to (B), the curve 513 corresponds to (C), and the curve 514 corresponds to (D). In this way, the magnetic field strength distribution can be adjusted by changing the interval between the divided magnetic guide plates.
 図11は、最下流側の分割導磁板(分割導磁板314dおよび分割導磁板324d)を移動した場合における磁界強度分布の変化を示す図である。なお、図11の(C)に示した場合が既定位置であり、この場合、各分割導磁板間の距離は、同図の左から、0.5mm、1.5mm、0.5mmとなる。なお、分割導磁板314dおよび分割導磁板324dには、図10に示した位置調整機構111が接続されている。 FIG. 11 is a diagram showing a change in magnetic field strength distribution when the most downstream divided magnetic guide plate (divided magnetic guide plate 314d and divided magnetic guide plate 324d) is moved. In addition, the case shown in FIG. 11C is the default position, and in this case, the distance between each divided magnetic guide plate is 0.5 mm, 1.5 mm, and 0.5 mm from the left in FIG. . Note that the position adjusting mechanism 111 shown in FIG. 10 is connected to the divided magnetic guide plates 314d and 324d.
 また、同図の(A)では、分割導磁板314cと分割導磁板314dとの間隔および分割導磁板324cと分割導磁板324dとの間隔を、0.0mmとした場合を、同図の(B)では、同じく0.2mmとした場合を、同図の(D)では、同じく1.0mmとした場合を、それぞれ示している。 Further, in (A) of the figure, the case where the distance between the divided magnetic guide plates 314c and 314d and the distance between the divided magnetic guide plates 324c and 324d is 0.0 mm is the same. (B) of the figure shows the case of 0.2 mm, and (D) of the figure shows the case of 1.0 mm.
 そして、同図の(E)には、(A)~(D)にそれぞれ対応する磁界強度の変化を示す曲線を示している。ここで、曲線521は(A)に、曲線522は(B)に、曲線523は(C)に、曲線524は(D)に、それぞれ対応している。このように、分割導磁板の間隔を変更することで、磁界強度分布を調整することができる。 (E) in the figure shows curves indicating changes in magnetic field intensity corresponding to (A) to (D), respectively. Here, the curve 521 corresponds to (A), the curve 522 corresponds to (B), the curve 523 corresponds to (C), and the curve 524 corresponds to (D). In this way, the magnetic field strength distribution can be adjusted by changing the interval between the divided magnetic guide plates.
 なお、図10および図11では、最上流および最下流の分割導磁板をそれぞれ移動する場合について示したが、他の分割導磁板を移動することとしてもよい。また、各分割導磁板を取り外し可能に固定する個数調整機構を用いることとしたうえで、分割導磁板の個数を調整することとしてもよい。 Although FIGS. 10 and 11 show the case where the most upstream and the most downstream divided magnetic guide plates are moved, other divided magnetic guide plates may be moved. Further, the number adjusting mechanism for detachably fixing each divided magnetic guide plate may be used, and the number of the divided magnetic guide plates may be adjusted.
 ところで、これまでは、それぞれが搬送方向と平行な分割導磁板を用いる場合について説明してきたが、分割導磁板を必ずしも搬送方向と平行にする必要はない。図12は、分割導磁板配置の変形例を示す図である。同図に示すように、分割導磁板を搬送方向と非平行となるように配置しても、各磁力線がY軸と平行になる搬送ライン(同図の矢印参照)を得ることができる。 By the way, although the case where each used the division | segmentation magnetic guide plate parallel to a conveyance direction was demonstrated so far, it is not necessary to necessarily make a division | segmentation magnetic guide plate parallel to a conveyance direction. FIG. 12 is a diagram showing a modified example of the arrangement of the divided magnetic guide plates. As shown in the figure, even if the divided magnetic guide plates are arranged so as not to be parallel to the conveyance direction, a conveyance line (see the arrow in the figure) in which each magnetic field line is parallel to the Y axis can be obtained.
 また、これまでは、搬送方向が固定された磁気質検出装置300について説明してきたが、双方向の搬送に対応した磁気質検出装置300を構成することとしてもよい。そこで以下では、図13および図14を用いて双方向搬送に対応した磁気質検出装置300について、それぞれ説明することとする。 In addition, the magnetic quality detection apparatus 300 with the conveyance direction fixed has been described so far, but the magnetic quality detection apparatus 300 corresponding to bidirectional conveyance may be configured. Therefore, hereinafter, the magnetic quality detection device 300 corresponding to the bidirectional conveyance will be described with reference to FIGS. 13 and 14.
 図13は、双方向搬送に対応した磁気質検出装置その1の構成および磁界強度分布を示す図である。なお、同図の(A)には、磁気質検出装置300aが発生する磁力線を、同図の(B)には、磁界強度分布を、それぞれ示している。 FIG. 13 is a diagram showing the configuration and magnetic field strength distribution of the magnetic quality detection apparatus 1 corresponding to bidirectional conveyance. In addition, (A) in the figure shows the lines of magnetic force generated by the magnetic quality detection device 300a, and (B) in the figure shows the magnetic field strength distribution.
 図13の(A)に示したように、磁気質検出装置300aは、図9に示した磁気質検出装置300を、同図に示す位置542について反転させて接続した形状を有している。なお、同図に示すように、磁気質検出装置300aは、上部ユニット310aと、下部ユニット320aとから構成される。また、搬送ラインは、同図に示す両矢印の位置となり、この搬送ライン上では、各磁力線の向きがY軸と平行となる。 As shown in FIG. 13A, the magnetic quality detection device 300a has a shape in which the magnetic quality detection device 300 shown in FIG. 9 is connected by being inverted at a position 542 shown in FIG. In addition, as shown to the figure, the magnetic quality detection apparatus 300a is comprised from the upper unit 310a and the lower unit 320a. Further, the transport line is located at the position of the double arrow shown in the figure, and the direction of each magnetic force line is parallel to the Y axis on the transport line.
 また、同図の(B)に示したように、磁界強度の変化を示す曲線544は、位置541~位置542の区間では、変曲点がない非減少グラフとしてあらわされる。また、曲線544は、位置542~位置543の区間では、変曲点がない非増加グラフとしてあらわされる。このように、磁気質検出装置300aは、位置542について対称な形状を有しているので、双方向搬送に対応することができる。 Further, as shown in FIG. 5B, the curve 544 showing the change in the magnetic field strength is represented as a non-decreasing graph having no inflection points in the section from the position 541 to the position 542. The curve 544 is represented as a non-increasing graph having no inflection points in the section from the position 542 to the position 543. Thus, since the magnetic quality detection apparatus 300a has a symmetrical shape with respect to the position 542, it can support bidirectional conveyance.
 この場合、紙葉類を同図の左から右へ搬送する場合には、同図に示す「MR1」および「MR2」のMRセンサを用い、紙葉類を同図の右から左へ搬送する場合には、同図に示す「MR1´」および「MR2´」のMRセンサを用いる。 In this case, when paper sheets are conveyed from left to right in the figure, the MR sensors “MR1” and “MR2” shown in the figure are used to convey the paper sheets from right to left in the figure. In this case, MR sensors “MR1 ′” and “MR2 ′” shown in FIG.
 図14は、双方向搬送に対応した磁気質検出装置その2の構成および磁界強度分布を示す図である。なお、同図の(A)には、磁気質検出装置300bが発生する磁力線を、同図の(B)には、磁界強度分布を、それぞれ示している。 FIG. 14 is a diagram showing the configuration and magnetic field intensity distribution of the magnetic quality detection apparatus 2 that supports bidirectional conveyance. In addition, (A) in the figure shows the lines of magnetic force generated by the magnetic quality detection device 300b, and (B) in the figure shows the magnetic field strength distribution.
 図14の(A)に示したように、磁気質検出装置300bは、図10に示した磁気質検出装置300aから中央部分における壁を取り除いた形状を有している。なお、同図に示すように、磁気質検出装置300aは、上部ユニット310bと、下部ユニット320bとから構成される。また、搬送ラインは、同図に示す両矢印の位置となり、この搬送ライン上では、各磁力線の方向がY軸と平行となる。 As shown in FIG. 14A, the magnetic quality detection device 300b has a shape obtained by removing the wall at the central portion from the magnetic quality detection device 300a shown in FIG. As shown in the figure, the magnetic quality detection device 300a includes an upper unit 310b and a lower unit 320b. Moreover, a conveyance line becomes a position of the double arrow shown in the same figure, and the direction of each magnetic force line becomes parallel to a Y-axis on this conveyance line.
 また、同図の(B)に示したように、磁界強度の変化を示す曲線554は、位置551~位置552の区間では、変曲点がない非減少グラフとしてあらわされ、位置552~位置553の区間では、変曲点がない非増加グラフとしてあらわされる。このように、磁気質検出装置300bは、位置552について対称な形状を有しているので、双方向搬送に対応することができる。 Further, as shown in FIG. 5B, the curve 554 showing the change in the magnetic field strength is represented as a non-decreasing graph having no inflection point in the section from the position 551 to the position 552, and the position 552 to the position 553. In this section, it is expressed as a non-increasing graph with no inflection points. Thus, since the magnetic quality detection apparatus 300b has a symmetric shape with respect to the position 552, it can cope with bidirectional conveyance.
 この場合、紙葉類を同図の左から右へ搬送する場合には、同図に示す「MR1」および「MR2」のMRセンサを用い、紙葉類を同図の右から左へ搬送する場合には、同図に示す「MR1´」および「MR2」のMRセンサを用いる。 In this case, when paper sheets are conveyed from left to right in the figure, the MR sensors “MR1” and “MR2” shown in the figure are used to convey the paper sheets from right to left in the figure. In this case, MR sensors “MR1 ′” and “MR2” shown in FIG.
 上述してきたように、実施例3では、上部ユニットの搬送路側に複数の分割導磁板を配置するとともに、下部ユニットの搬送路側に複数の分割導磁板を配置することとしたので、上部ユニット/下部ユニット間の磁界強度の変化をステップ状にすることができる。したがって、MRセンサの取付ずれの許容範囲を広げることができる。また、分割導磁板の位置を変更したり、分割導磁板の数を変更したりすることで、磁界強度分布を調整することができる。 As described above, in the third embodiment, a plurality of divided magnetic guide plates are arranged on the conveyance path side of the upper unit, and a plurality of divided magnetic guide plates are arranged on the conveyance path side of the lower unit. / The change of the magnetic field strength between the lower units can be stepped. Therefore, it is possible to widen the allowable range of MR sensor mounting deviation. Further, the magnetic field strength distribution can be adjusted by changing the position of the divided magnetic guide plates or changing the number of the divided magnetic guide plates.
 次に、上述した実施例2に係る磁気質検出装置200あるいは実施例3に係る磁気質検出装置300に対して紙葉類押さえ機構を付加した場合について図15を用いて説明する。図15は、紙葉類押さえ機構のバリエーションを示す図である。 Next, a case where a paper sheet pressing mechanism is added to the magnetic quality detection device 200 according to the second embodiment or the magnetic quality detection device 300 according to the third embodiment will be described with reference to FIG. FIG. 15 is a diagram showing a variation of the paper sheet pressing mechanism.
 なお、同図の(A)には、実施例3に係る磁気質検出装置300に対して付加する紙葉類押さえ機構について、同図の(B)および同図の(C)には、実施例2に係る磁気質検出装置200に対して付加する紙葉類押さえ機構について、それぞれ示している。また、同図には、紙葉類500、紙葉類500の搬送方向501、下部ユニット320あるいは下部ユニット220の上面(搬送路側)に付与された耐摩耗性素材の耐摩耗板502を併せて示している。 Note that (A) in the figure shows the paper sheet pressing mechanism added to the magnetic quality detection apparatus 300 according to the third embodiment, and (B) in the same figure and (C) in the same figure show the paper sheet holding mechanism. The paper sheet holding mechanism added to the magnetic quality detection apparatus 200 according to Example 2 is shown. Also shown in the drawing are a paper sheet 500, a transport direction 501 of the paper sheet 500, and a wear resistant plate 502 made of a wear resistant material provided on the upper surface (conveying path side) of the lower unit 320 or the lower unit 220. Show.
 図15の(A)に示したように、実施例3に係る磁気質検出装置300の場合、上部ユニット310と下部ユニット320との間隔は、実施例2に係る磁気質検出装置200の場合よりも狭くする必要がある。これは、上部ユニット310と下部ユニット320との中間位置に磁力線変曲点が存在するので、紙葉類500の搬送位置を磁力線変曲点位置付近とする必要があるためである。 As shown in FIG. 15A, in the case of the magnetic quality detection device 300 according to the third embodiment, the distance between the upper unit 310 and the lower unit 320 is larger than that of the magnetic quality detection device 200 according to the second embodiment. Need to be narrow. This is because a magnetic field inflection point exists at an intermediate position between the upper unit 310 and the lower unit 320, and therefore, the transport position of the paper sheet 500 needs to be near the magnetic field inflection point position.
 このように、実施例3に係る磁気質検出装置300では、上部ユニット310/下部ユニット320間の間隔が小さいので、同図に示すように、紙葉類押さえ機構として押さえばね71を使用する。 As described above, in the magnetic quality detection device 300 according to the third embodiment, since the interval between the upper unit 310 and the lower unit 320 is small, the pressing spring 71 is used as a paper sheet pressing mechanism as shown in FIG.
 具体的には、押さえばね71は、ピン72で固定されており、搬送される紙葉類500を、下部ユニット220の上面に押さえつける。しかしながら、押さえばね71のような板ばねによる押さえでは、紙葉類の高速搬送時にジャム(紙葉類詰まり)が発生しやすい。 Specifically, the pressing spring 71 is fixed by a pin 72 and presses the conveyed paper sheet 500 against the upper surface of the lower unit 220. However, pressing with a leaf spring such as the pressing spring 71 tends to cause jam (paper jam) during high-speed conveyance of paper sheets.
 このため、図15の(B)や(C)に示したように、実施例2に係る磁気質検出装置200を使用することとすれば、磁力線変曲点位置を下部ユニットの上面付近に調整することができるので、上部ユニット210/下部ユニット220間の間隔を大きくとることが可能となる。これにより、紙葉類500に対する押さえ効果が高いローラ付きアームを紙葉類押さえ機構として用いることができる。 Therefore, as shown in FIGS. 15B and 15C, if the magnetic quality detection device 200 according to the second embodiment is used, the magnetic field inflection point position is adjusted near the upper surface of the lower unit. Therefore, the distance between the upper unit 210 and the lower unit 220 can be increased. Thereby, the arm with a roller with a high pressing effect with respect to the paper sheet 500 can be used as a paper sheet pressing mechanism.
 同図の(B)に示したように、ローラ付きアームは、アーム73にローラ75を取り付けることで構成されている。具体的には、ローラ75をローラ軸76で支持するアーム73は、アーム軸74まわりに回動するように取り付けられており、アーム73の一端は、ばね78経由でピン77に固定されている。 As shown in (B) of the figure, the arm with roller is configured by attaching a roller 75 to the arm 73. Specifically, the arm 73 that supports the roller 75 with the roller shaft 76 is attached so as to rotate around the arm shaft 74, and one end of the arm 73 is fixed to the pin 77 via the spring 78. .
 かかるローラ付きアームを用いた場合、同図に破線で示した位置(同図の73a参照)まで、ローラ付きアームは移動することがある。したがって、同図の(B)に示したように、上部ユニット210は、ローラ付きアームと接触しない位置に設ける必要がある。このため、同図の(B)に示したように、上部ユニット210/下部ユニット220間の間隔を、同図の(A)に示した場合よりも大きくする必要がある。 When such an arm with a roller is used, the arm with a roller may move to a position indicated by a broken line in the figure (see 73a in the figure). Therefore, as shown in FIG. 5B, the upper unit 210 needs to be provided at a position where it does not contact the arm with roller. For this reason, as shown in (B) of the same figure, it is necessary to make the space | interval between the upper unit 210 / lower unit 220 larger than the case shown to (A) of the same figure.
 そこで、同図の(C)に示したように、上部ユニット210の下面を下側が凹んだ形としてローラ付きアームとの接触を避けたうえで、上部ユニット210の取付位置を、図15の(B)における上部ユニット210の取付位置(同図の79参照)よりも搬送路側に近づけることとしてもよい。このようにすることで、ローラ付きアームを用いつつ磁気質検出装置200の装置サイズをコンパクト化することができる。 Therefore, as shown in FIG. 15C, the lower surface of the upper unit 210 is recessed on the lower side so as to avoid contact with the arm with rollers, and the mounting position of the upper unit 210 is changed to the position shown in FIG. The mounting position of the upper unit 210 in B) may be closer to the conveyance path side than the attachment position (see 79 in the figure). By doing in this way, the apparatus size of the magnetic quality detection apparatus 200 can be made compact, using an arm with a roller.
 以上のように、本発明に係る磁気質検出装置は、磁気インクの保磁力特性の差異を精度良く検出したい場合に有用である。 As described above, the magnetic quality detection device according to the present invention is useful when it is desired to accurately detect the difference in coercive force characteristics of magnetic ink.

Claims (6)

  1.  磁気インクで印刷された紙葉類を搬送面に沿って搬送することで前記紙葉類の磁気を検出する磁気質検出装置であって、
     磁石の異極間をヨークで連結した磁石ユニットを、前記搬送面を挟んで対向する位置にそれぞれ配置しており、前記搬送面における磁気検出区間において磁気ベクトルの向きが前記搬送面と垂直であり、かつ、磁界強度が前記磁気検出区間における搬送向きについて非減少または非増加となるように調整された磁界発生手段と、
     前記磁気検出区間に設けられた磁気質検出手段と
     を備えたことを特徴とする磁気質検出装置。
    A magnetic quality detection device for detecting the magnetism of the paper sheet by transporting the paper sheet printed with magnetic ink along the transport surface,
    Magnet units in which different poles of magnets are connected by a yoke are arranged at positions facing each other across the transport surface, and the direction of a magnetic vector is perpendicular to the transport surface in a magnetic detection section on the transport surface. And the magnetic field generation means adjusted so that the magnetic field intensity is non-decreasing or non-increasing with respect to the conveyance direction in the magnetic detection section,
    A magnetic quality detection device comprising: a magnetic quality detection means provided in the magnetic detection section.
  2.  前記磁界発生手段の各磁石ユニットは、
     前記搬送面を挟んで対向する前記磁石の磁極が異極同士となるように配置されていることを特徴とする請求項1に記載の磁気質検出装置。
    Each magnet unit of the magnetic field generating means is
    The magnetic quality detection device according to claim 1, wherein the magnetic poles of the magnets facing each other across the transport surface are arranged so as to be different from each other.
  3.  前記磁界発生手段は、
     各磁石ユニットの前記搬送面側に搬送方向について分断された複数の分割導磁板をさらに備えており、
     前記磁気質検出手段は、
     前記分割導磁板に対応する位置であって、前記分割導磁板よりも前記搬送面寄りに設けられていることを特徴とする請求項1に記載の磁気質検出装置。
    The magnetic field generating means includes
    It further comprises a plurality of divided magnetic guide plates divided in the transport direction on the transport surface side of each magnet unit,
    The magnetic quality detection means includes
    The magnetic quality detection apparatus according to claim 1, wherein the magnetic quality detection apparatus is provided at a position corresponding to the divided magnetic guide plate and closer to the transport surface than the divided magnetic guide plate.
  4.  前記磁界発生手段は、
     前記分割導磁板の搬送方向における位置を調整する位置調整機構をさらに備えたことを特徴とする請求項3に記載の磁気質検出装置。
    The magnetic field generating means includes
    The magnetic quality detection apparatus according to claim 3, further comprising a position adjustment mechanism that adjusts a position of the divided magnetic guide plate in a conveyance direction.
  5.  前記磁界発生手段は、
     一方の前記磁石ユニットの前記搬送面側に1つの導磁板をさらに備えており、
     前記磁気質検出手段は、
     前記導磁板よりも前記搬送面寄りに設けられていることを特徴とする請求項1に記載の磁気質検出装置。
    The magnetic field generating means includes
    One magnetic guide plate is further provided on the transport surface side of one of the magnet units,
    The magnetic quality detection means includes
    The magnetic quality detection device according to claim 1, wherein the magnetic quality detection device is provided closer to the conveyance surface than the magnetic conducting plate.
  6.  前記磁界発生手段は、
     導磁率および/または板厚が異なる前記導磁板を用いることで前記搬送面と前記一方の磁石ユニットとの距離を調整することを特徴とする請求項5に記載の磁気質検出装置。
    The magnetic field generating means includes
    The magnetic quality detection apparatus according to claim 5, wherein a distance between the transport surface and the one magnet unit is adjusted by using the magnetic guide plates having different magnetic conductivities and / or plate thicknesses.
PCT/JP2008/070411 2008-11-10 2008-11-10 Magnetic property detection apparatus WO2010052797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010536631A JP5242698B2 (en) 2008-11-10 2008-11-10 Magnetic quality detection device
PCT/JP2008/070411 WO2010052797A1 (en) 2008-11-10 2008-11-10 Magnetic property detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070411 WO2010052797A1 (en) 2008-11-10 2008-11-10 Magnetic property detection apparatus

Publications (1)

Publication Number Publication Date
WO2010052797A1 true WO2010052797A1 (en) 2010-05-14

Family

ID=42152612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070411 WO2010052797A1 (en) 2008-11-10 2008-11-10 Magnetic property detection apparatus

Country Status (2)

Country Link
JP (1) JP5242698B2 (en)
WO (1) WO2010052797A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289857A (en) * 2011-05-19 2011-12-21 广州广电运通金融电子股份有限公司 Valuable file identifying method and system
JP2012122983A (en) * 2010-11-16 2012-06-28 Mitsubishi Electric Corp Magnetic sensor device
WO2012157558A1 (en) * 2011-05-16 2012-11-22 三菱電機株式会社 Magnetic sensor device
CN103038659A (en) * 2010-07-30 2013-04-10 三菱电机株式会社 Magnetic substance detection device
WO2013146755A1 (en) * 2012-03-29 2013-10-03 グローリー株式会社 Paper sheet magnetism evaluation device and paper sheet magnetism evaluation method
WO2013153986A1 (en) * 2012-04-09 2013-10-17 三菱電機株式会社 Magnetic sensor
JP2013217768A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Magnetic sensor device
JP2013217767A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Magnetic sensor device
JP2014524572A (en) * 2011-08-15 2014-09-22 メアス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Measuring device for measuring the magnetic properties of its surroundings
WO2014147824A1 (en) 2013-03-22 2014-09-25 グローリー株式会社 Magnetic-characteristics detection device
CN104105977A (en) * 2012-02-13 2014-10-15 株式会社村田制作所 Magnetic sensor apparatus
WO2014168180A1 (en) * 2013-04-09 2014-10-16 グローリー株式会社 Magnetic property determination device and magnetic property determination method
JP2015007580A (en) * 2013-06-25 2015-01-15 三菱電機株式会社 Magnetic sensor device
CN104471355A (en) * 2012-07-06 2015-03-25 北京磊岳同泰电子有限公司 Chip-type magnetic sensor
WO2015156241A1 (en) * 2014-04-09 2015-10-15 グローリー株式会社 Magnetic property determination device and magnetic property determination method
WO2015174409A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Magnetic sensor device
EP2600164A4 (en) * 2010-07-30 2016-03-30 Mitsubishi Electric Corp Magnetic sensor device
WO2016170885A1 (en) * 2015-04-24 2016-10-27 日本電産サンキョー株式会社 Magnetic sensor device
EP2988279A4 (en) * 2013-04-16 2017-02-22 Wuxi Ler Technology Co., Ltd. Magnetic head for detecting magnetic field on surface of magnetic pattern based on magneto-resistance technology
JP2017133845A (en) * 2016-01-25 2017-08-03 株式会社ヴィーネックス Magnetic sensor device
WO2017191823A1 (en) * 2016-05-06 2017-11-09 三菱電機株式会社 Magnetic sensor device
WO2020059577A1 (en) 2018-09-19 2020-03-26 日本製鉄株式会社 Hot-rolled steel sheet cooling device, and hot-rolled steel sheet cooling method
WO2021199757A1 (en) * 2020-03-30 2021-10-07 三菱電機株式会社 Magnetic sensor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187001B (en) * 2019-05-22 2022-05-24 西红柿科技(武汉)有限公司 Defect detection method adopting surface magnetic conductance technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427512B2 (en) * 1983-05-27 1992-05-12 Hitachi Ltd
JPH04364498A (en) * 1991-06-12 1992-12-16 Glory Ltd Detecting method of magnetic property and detecting device of magnetic property using the same
JP2000056001A (en) * 1998-07-31 2000-02-25 Noboru Masuda Detecting method for nonmagnetic metal material by magnetoresistive element
JP3283931B2 (en) * 1992-12-11 2002-05-20 グローリー工業株式会社 Magnetic quality detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027512B2 (en) * 1998-09-29 2007-12-26 フジノン株式会社 Pattern projection measurement grid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427512B2 (en) * 1983-05-27 1992-05-12 Hitachi Ltd
JPH04364498A (en) * 1991-06-12 1992-12-16 Glory Ltd Detecting method of magnetic property and detecting device of magnetic property using the same
JP3283931B2 (en) * 1992-12-11 2002-05-20 グローリー工業株式会社 Magnetic quality detector
JP2000056001A (en) * 1998-07-31 2000-02-25 Noboru Masuda Detecting method for nonmagnetic metal material by magnetoresistive element

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2600164A4 (en) * 2010-07-30 2016-03-30 Mitsubishi Electric Corp Magnetic sensor device
JP5474195B2 (en) * 2010-07-30 2014-04-16 三菱電機株式会社 Magnetic detection device
US9222993B2 (en) 2010-07-30 2015-12-29 Mitsubishi Electric Corporation Magnetic substance detection device
CN103038659A (en) * 2010-07-30 2013-04-10 三菱电机株式会社 Magnetic substance detection device
US20130127457A1 (en) * 2010-07-30 2013-05-23 Mitsubishi Electric Corporation Magnetic substance detection device
JPWO2012014546A1 (en) * 2010-07-30 2013-09-12 三菱電機株式会社 Magnetic detection device
JP2012122983A (en) * 2010-11-16 2012-06-28 Mitsubishi Electric Corp Magnetic sensor device
EP2711728A1 (en) * 2011-05-16 2014-03-26 Mitsubishi Electric Corporation Magnetic sensor device
US9244135B2 (en) 2011-05-16 2016-01-26 Mitsubishi Electric Corporation Magnetic sensor device
JP2012255770A (en) * 2011-05-16 2012-12-27 Mitsubishi Electric Corp Magnetic sensor device
WO2012157558A1 (en) * 2011-05-16 2012-11-22 三菱電機株式会社 Magnetic sensor device
CN103842838A (en) * 2011-05-16 2014-06-04 三菱电机株式会社 Magnetic sensor device
EP2711728A4 (en) * 2011-05-16 2015-04-15 Mitsubishi Electric Corp Magnetic sensor device
CN102289857A (en) * 2011-05-19 2011-12-21 广州广电运通金融电子股份有限公司 Valuable file identifying method and system
US9482725B2 (en) 2011-08-15 2016-11-01 Meas Deutschland Gmbh Sensor device including magnetoresistive sensor element and pre-magnetization device
US10109131B2 (en) 2011-08-15 2018-10-23 TE Connectivity Sensors Germany GmbH Sensor device including magnetoresistive sensor element and pre-magnetization device
JP2014524572A (en) * 2011-08-15 2014-09-22 メアス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Measuring device for measuring the magnetic properties of its surroundings
CN104105977A (en) * 2012-02-13 2014-10-15 株式会社村田制作所 Magnetic sensor apparatus
EP2816368A4 (en) * 2012-02-13 2015-12-16 Murata Manufacturing Co Magnetic sensor apparatus
CN104105977B (en) * 2012-02-13 2017-09-26 株式会社村田制作所 magnetic sensing device
JPWO2013121870A1 (en) * 2012-02-13 2015-05-11 株式会社村田製作所 Magnetic sensor device
WO2013146755A1 (en) * 2012-03-29 2013-10-03 グローリー株式会社 Paper sheet magnetism evaluation device and paper sheet magnetism evaluation method
JP2013206439A (en) * 2012-03-29 2013-10-07 Glory Ltd Paper sheet magnetism evaluation device and paper sheet magnetism evaluation method
CN104204835A (en) * 2012-04-09 2014-12-10 三菱电机株式会社 Magnetic sensor
US20150102808A1 (en) * 2012-04-09 2015-04-16 Mitsubishi Electric Corporation Magnetic sensor
WO2013153986A1 (en) * 2012-04-09 2013-10-17 三菱電機株式会社 Magnetic sensor
US9279866B2 (en) 2012-04-09 2016-03-08 Mitsubishi Electric Corporation Magnetic sensor
JP2013217768A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Magnetic sensor device
JP2013217767A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Magnetic sensor device
CN104471355B (en) * 2012-07-06 2016-12-14 北京磊岳同泰电子有限公司 Chip type magnetic sensor
CN104471355A (en) * 2012-07-06 2015-03-25 北京磊岳同泰电子有限公司 Chip-type magnetic sensor
RU2610341C1 (en) * 2013-03-22 2017-02-09 Глори Лтд. Magnetic propriety detection device
CN105026924B (en) * 2013-03-22 2019-01-08 光荣株式会社 Magnetic characteristic detection device
CN105026924A (en) * 2013-03-22 2015-11-04 光荣株式会社 Magnetic-characteristics detection device
US9595152B2 (en) 2013-03-22 2017-03-14 Glory Ltd. Magnetic property detection apparatus
JP5945627B2 (en) * 2013-03-22 2016-07-05 グローリー株式会社 Magnetic quality detection device
JPWO2014147824A1 (en) * 2013-03-22 2017-02-16 グローリー株式会社 Magnetic quality detection device
WO2014147824A1 (en) 2013-03-22 2014-09-25 グローリー株式会社 Magnetic-characteristics detection device
US9886808B2 (en) 2013-04-09 2018-02-06 Glory Ltd. Magnetic property determination apparatus and magnetic property determination method
EP2985621A4 (en) * 2013-04-09 2017-03-01 Glory Ltd. Magnetic property determination device and magnetic property determination method
WO2014168180A1 (en) * 2013-04-09 2014-10-16 グローリー株式会社 Magnetic property determination device and magnetic property determination method
JP6049864B2 (en) * 2013-04-09 2016-12-21 グローリー株式会社 Magnetic quality discrimination device and magnetic quality discrimination method
CN105051561A (en) * 2013-04-09 2015-11-11 光荣株式会社 Magnetic property determination device and magnetic property determination method
RU2623813C2 (en) * 2013-04-09 2017-06-29 Глори Лтд. Device for determination of magnetic properties and method of determination of magnetic properties
JPWO2014168180A1 (en) * 2013-04-09 2017-02-16 グローリー株式会社 Magnetic quality discrimination device and magnetic quality discrimination method
EP2988279A4 (en) * 2013-04-16 2017-02-22 Wuxi Ler Technology Co., Ltd. Magnetic head for detecting magnetic field on surface of magnetic pattern based on magneto-resistance technology
JP2015007580A (en) * 2013-06-25 2015-01-15 三菱電機株式会社 Magnetic sensor device
EP3131069A4 (en) * 2014-04-09 2017-12-06 Glory Ltd. Magnetic property determination device and magnetic property determination method
WO2015156241A1 (en) * 2014-04-09 2015-10-15 グローリー株式会社 Magnetic property determination device and magnetic property determination method
JP2015201083A (en) * 2014-04-09 2015-11-12 グローリー株式会社 Magnetic characteristics determination apparatus and magnetic characteristics determination method
US10001533B2 (en) 2014-04-09 2018-06-19 Glory Ltd. Magnetic property determination apparatus and magnetic property determination method
CN106104639A (en) * 2014-04-09 2016-11-09 光荣株式会社 Magnetic substance discriminating gear and magnetic substance method of discrimination
WO2015174409A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Magnetic sensor device
US10001532B2 (en) 2014-05-13 2018-06-19 Mitsubishi Electric Corporation Magnetic sensor device
JPWO2015174409A1 (en) * 2014-05-13 2017-04-20 三菱電機株式会社 Magnetic sensor device
JP2016206069A (en) * 2015-04-24 2016-12-08 日本電産サンキョー株式会社 Magnetic sensor device
CN108156821A (en) * 2015-04-24 2018-06-12 日本电产三协株式会社 Magnet sensor arrangement
WO2016170885A1 (en) * 2015-04-24 2016-10-27 日本電産サンキョー株式会社 Magnetic sensor device
JP2017133845A (en) * 2016-01-25 2017-08-03 株式会社ヴィーネックス Magnetic sensor device
WO2017191823A1 (en) * 2016-05-06 2017-11-09 三菱電機株式会社 Magnetic sensor device
WO2020059577A1 (en) 2018-09-19 2020-03-26 日本製鉄株式会社 Hot-rolled steel sheet cooling device, and hot-rolled steel sheet cooling method
WO2021199757A1 (en) * 2020-03-30 2021-10-07 三菱電機株式会社 Magnetic sensor device
JP6980166B1 (en) * 2020-03-30 2021-12-15 三菱電機株式会社 Magnetic sensor device
US11639974B1 (en) 2020-03-30 2023-05-02 Mitsubishi Electric Corporation Magnetic sensor device

Also Published As

Publication number Publication date
JPWO2010052797A1 (en) 2012-03-29
JP5242698B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5242698B2 (en) Magnetic quality detection device
US9595152B2 (en) Magnetic property detection apparatus
JP6049864B2 (en) Magnetic quality discrimination device and magnetic quality discrimination method
EP2869276B1 (en) Paper sheet magnetic detection apparatus
KR20100094992A (en) Magnetic pattern detecting apparatus
WO2015156241A1 (en) Magnetic property determination device and magnetic property determination method
JP2008145379A (en) Magnetic sensor
WO2016170885A1 (en) Magnetic sensor device
JPH06180305A (en) Magnetism detector
WO2006120825A1 (en) Magnetic sensor and device for identifying sheet
JPH04364498A (en) Detecting method of magnetic property and detecting device of magnetic property using the same
KR101082662B1 (en) Automated teller machine and sensing apparatus of medium
JP2005129009A (en) Paper sheet discriminating device and method
JP2006293574A (en) Paper sheet discrimination device and magnetic characteristic detection device
JP2008145302A (en) Magnetic sensor
JP2004199459A (en) Printed matter, authenticity determining method thereof, and authenticity determining device thereof
JP4771738B2 (en) Paper sheet identification device and magnetic sensor for paper sheet identification
JP2014203396A (en) Magnetic quality discrimination apparatus, and magnetic quality discrimination method
JP4794553B2 (en) Magnetic quantity detection sensor, magnetic quantity detection sensor device, and paper sheet identification device
JP2021147198A (en) Thickness detection device, paper sheet discrimination device, and thickness detection method
JP2012079392A (en) Magnetic head
BR102014021314B1 (en) PAPER SHEET MAGNETIC DETECTION APPARATUS
JP2006195610A (en) Paper sheet discrimination device and paper sheet discrimination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010536631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877992

Country of ref document: EP

Kind code of ref document: A1