WO2013147379A1 - 심해저 망간단괴 집광로봇 - Google Patents

심해저 망간단괴 집광로봇 Download PDF

Info

Publication number
WO2013147379A1
WO2013147379A1 PCT/KR2012/008296 KR2012008296W WO2013147379A1 WO 2013147379 A1 WO2013147379 A1 WO 2013147379A1 KR 2012008296 W KR2012008296 W KR 2012008296W WO 2013147379 A1 WO2013147379 A1 WO 2013147379A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
frame
power
traveling
robot
Prior art date
Application number
PCT/KR2012/008296
Other languages
English (en)
French (fr)
Inventor
홍섭
김형우
최종수
여태경
박성재
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to US14/387,200 priority Critical patent/US9334734B2/en
Publication of WO2013147379A1 publication Critical patent/WO2013147379A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8858Submerged units
    • E02F3/8866Submerged units self propelled
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/907Measuring or control devices, e.g. control units, detection means or sensors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9206Digging devices using blowing effect only, like jets or propellers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/02Conveying equipment mounted on a dredger
    • E02F7/023Conveying equipment mounted on a dredger mounted on a floating dredger
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/06Delivery chutes or screening plants or mixing plants mounted on dredgers or excavators
    • E02F7/065Delivery chutes or screening plants or mixing plants mounted on dredgers or excavators mounted on a floating dredger

Definitions

  • the present invention relates to a deep sea manganese nodule condensing robot, and more particularly, to a deep sea manganese nodule condensing device having a robot function that can be connected in parallel with each other, and can be further extended according to the collection amount of manganese nodules.
  • the tracked vehicles used in civil engineering, construction, agriculture, etc. are driven on a hard surface, so the low ground pressure is not particularly required bar width is relatively narrow.
  • a tracked vehicle that runs on a sticky soft ground such as a deep sea soft ground, nizil pearl tidal flat, etc. requires a low ground pressure to prevent the tracked vehicle from being dug below the ground.
  • the above-mentioned prior art document divides the endless track of the endless tracked vehicle for cohesive soft ground in two rows, and reinforces the support frame supporting the load of the mounted equipment through the space between the separated endless tracks, A tracked vehicle in which two tracks are separated into two tracks that can reduce the ground pressure and stably support the onboard equipment is disclosed.
  • the crawler vehicle has a problem that it is difficult to control the driving independently of each other, it is not possible to perform a collection operation having a different collection amount at different locations on the seabed.
  • An object of the present invention is to connect the traveling unit having a collecting unit and a sending unit so as to be detachable in parallel to adjust the collection capacity of the manganese nodules and at the same time to maintain the safety of the entire structure and the appropriate ground pressure deep sea manganese nodule condensing To provide a robot.
  • the present invention provides a plurality of traveling device units arranged to be detachable in parallel with each other;
  • a collecting device unit installed at the front end of the plurality of traveling device units and collecting manganese nodules;
  • a transmission device unit installed on the plurality of traveling device units and crushing the collected manganese nodules to a predetermined size or less and sending them out;
  • a power control measurement unit installed in the plurality of traveling device units, providing power to the traveling device unit, and controlling driving of the collecting device unit and the delivery device unit;
  • a structural frame connecting the traveling device parts and supporting the collecting device part, the delivery device part, and the power control measurement part;
  • a deep sea manganese nodule condensing robot including a buoyancy unit installed at an upper end of the structural frame.
  • Each of the traveling device units preferably includes one or more infinite tracks arranged side by side to each other.
  • the collecting device unit is disposed at the front end of each of the traveling device unit, by spraying a water jet on the sea bottom surface to support the manganese nodules located on the sea surface and guides to the inside, and connected with the flotation device, Receiving power from the power measurement control unit, the transfer device for transferring the suspended manganese nodules to the delivery device, and receives the power from the power measurement control unit, the lower end of the flotation device and the bottom surface maintain a predetermined height It is preferable to have a posture control device for elevating the flotation device, and the posture control device, and a frame for connecting the flotation device, the transfer device and the structural frame.
  • the flotation device is preferably provided with a water jet injection nozzle device and a flow guide plate capable of jetting the water jet.
  • the dispensing device unit receives power from the power measuring control unit, is adjacent to the collecting device unit, and shredding device for crushing manganese nodules conveyed by the conveying device to a predetermined size or less, and the power from the power measuring control unit.
  • a delivery pump connected to the crushing device and sending the crushed manganese nodules, a sending pipe connected to the sending device and forming a route for sending the sent out manganese nodules to the outside, and the sending pipe It is preferable to have a dump valve which is installed on, and receives power from the power measurement control unit, and prevents clogging of the delivery pipe and the delivery pump during the delivery of the crushed manganese nodules.
  • the structural frame may include a traveling device connecting frame for detachably connecting the traveling device units, a collecting device connecting frame connected to the frame to support the collecting device unit, and a sending device connecting frame for supporting the delivery device unit; And a body frame for connecting the power control measuring unit connecting frame to support the power control measuring unit, the traveling device connecting frame, the collecting device connecting frame, the delivery device connecting frame, and the power control measuring unit connecting frame to each other.
  • the posture control device controls the lifting of the flotation device so as to achieve a reference interval value which is set in advance by receiving the gap value with the sea bottom from an interval measuring device installed in the flotation device.
  • the present invention has an effect that can be connected to the traveling device portion having a collecting device portion and the sending device portion detachably in parallel with each other, to adjust the number of the traveling device portion according to the collection amount of the nodule to set the device.
  • the present invention has the effect that it is possible to replace any or a plurality of the traveling device unit as described above.
  • the present invention has the effect of increasing the ground area on the soft ground of the seabed.
  • the present invention has the effect of selectively adjusting the number of the traveling device portion having an endless track according to the seabed topography for collecting purposes.
  • the rotational speed can be implemented differently, thereby significantly improving the difficulty of traveling at any position of the seabed terrain.
  • the present invention has an effect that can effectively adjust the overall collection capacity by having a plurality of traveling device unit equipped with a collecting device unit and a sending device unit.
  • FIG. 1 is a perspective view showing the configuration of a deep sea manganese nodule condensing robot of the present invention.
  • FIG. 2 is a perspective view illustrating the traveling device unit of FIG. 1.
  • FIG. 2 is a perspective view illustrating the traveling device unit of FIG. 1.
  • FIG. 3 is a perspective view showing the structure frame of FIG.
  • FIG. 4 is a perspective view showing a collecting device unit of FIG.
  • FIG. 5 is a perspective view showing the dispensing apparatus unit of FIG. 1.
  • FIG. 6 is a perspective view illustrating a power control measurement unit of FIG. 1.
  • FIG. 7 is a perspective view illustrating the structural frame, buoyancy part, and launch / recovery part of FIG. 1.
  • FIG. 8 is a side view showing a deep sea manganese nodule condensing robot of the present invention.
  • FIG. 1 is a perspective view showing the configuration of a deep sea manganese nodule condensing robot of the present invention.
  • FIG. 2 is a perspective view illustrating the traveling device unit of FIG. 1.
  • the deep sea manganese nodule condensing robot of the present invention includes a plurality of traveling device units 100, a collection device unit 200, a transmission device unit 300, a power control measurement unit 400, and a structural frame. It consists of 500, the buoyancy part 600, and the launch / recovery part 700. As shown in FIG.
  • each of the traveling device units 100 includes an endless track 110, a driving device 120, and a frame 130.
  • the frame 130 may be arranged parallel to each other.
  • the driving device 120 is installed at one end of the frame 130, and the idler 121 is installed at the other end.
  • the driving device 120 is rotated by receiving power from the power measurement control unit 400.
  • the crawler 110 is a configuration that is rotated by the rotation of the drive device 120 is bitten by the drive device 120, and is rotated for driving in a state that is substantially grounded on the sea bottom.
  • Each of the traveling device units 100 is disposed along a parallel connection direction.
  • each traveling device unit 100 is provided with a traveling device connecting frame 510 described below. Therefore, the driving device 100 may be connected to each other in parallel.
  • Each traveling device unit 100 according to the present invention is provided with an endless track 110 independently.
  • each of the traveling device 100 may be connected so that the number can be extended in parallel with each other.
  • Each traveling device 100 may be driven independently by receiving power from the power measurement control unit 400.
  • FIG. 6 is a perspective view showing the structure frame of FIG.
  • the structural frame 500 includes a traveling device connecting frame 510, a collecting device connecting frame 520, an output device connecting frame 530, a power control measuring unit connecting frame 540, and a body frame 550. It is composed.
  • the traveling device connecting frame 510 penetrates through the frame 130 of each traveling device 100 so that each traveling device 100 may be connected in parallel.
  • the through direction of the traveling device connecting frame 510 may follow a parallel direction in which each traveling device unit 100 is connected.
  • the traveling device connecting frame 510 may be adopted as a bolting type or a welding method.
  • the collecting device connecting frame 520 supports the collecting device unit 200.
  • the collecting device connecting frame 520 is installed at the front end of the frame 130 provided in each of the traveling device 100.
  • the delivery device connection frame 530 is located at the rear end of the collection device connection frame 520, is installed on the top of the traveling device connection frame 510.
  • the transmitter device connection frame 530 supports the transmitter device 300.
  • the power control measurement unit connecting frame 540 is installed on the traveling device connecting frame 510 to be located behind the transmission device connecting frame 530.
  • the power control measurement unit connection frame 540 supports the power control measurement unit 400.
  • the body frame 550 is formed by joining the connecting frames and forming a plurality of branches to surround the power control measurement connecting frame 540 upward. One end and the other end of the body frame 550 may be connected to and supported at both ends of the traveling device connecting frame 510.
  • a buoyancy part 600 and a launch / recovery part 700 may be installed at an upper end of the body frame 550.
  • the collecting device unit 200 may be installed in one or a plurality of collecting device units 100.
  • the collecting device unit 200 is supported by the collecting device connecting frame 520 which is installed in front of the frame 130 of each traveling device unit 100.
  • the collecting device unit 200 is composed of a flotation device 210, a transfer device 220, a posture control device 230, and a frame 240.
  • the flotation device 210 includes a device body 211 having a lower end opening, and a water jet injection nozzle device 212 installed at both front and rear sides of the bottom of the device body 211.
  • a pump 214 for supplying a water jet is installed at the top of the device body 211.
  • the pump 214 has a pipe line 213 branched to each water jet injection nozzle device 212 installed in the front and rear to transfer the water flow rate due to the pump 214.
  • the pump 214 is driven by receiving power from the power control measurement unit 400.
  • the transfer apparatus 220 is installed inside the apparatus body 211 and is connected to a plurality of gears (not shown), and a pair of left and right drive chains and the left and right drive chains.
  • Conveyor belt consisting of a plurality of scrapers connecting the chain to each other, a plurality of left and right idlers constituting the shape of the conveyor belt, and a pair of left and right sprockets.
  • the transfer apparatus may receive power from the power control measurement unit 400 to control the conveyor belt at a predetermined rotation speed.
  • the posture control device 230 receives power from the power measurement control unit 400, and lifts the flotation device 210 so that the lower end of the flotation device 210 and the sea bottom have a predetermined height.
  • the frame 240 is the posture control device 230 is installed, and forms the body by connecting the flotation device 210 and the transfer device 220.
  • the frame 240 is connected to the posture control device 230 is fixed to the collecting device connecting frame 520.
  • the posture control device 230 is a pair of left and right parallelogram links, and the power measurement control unit 400 receives the power, a pair of left and right hydraulic cylinders to control the movement of the left and right parallelogram links 232 ( 231).
  • the lifting and lowering of the flotation device 210 is controlled to receive a distance value with the sea bottom from an interval measurer (not shown) installed in the flotation device 210 to achieve a predetermined reference distance value.
  • the hydraulic cylinder 231 hingedly connects the frame 240 and the device body 211 of the flotation device 210.
  • the hydraulic cylinder 231 has a flexible shaft 231a.
  • the flotation device 210 may be moved up and down.
  • FIG. 1 is a perspective view showing a collecting device unit of FIG.
  • the lower end of the device body 211 of the flotation device 210 forms a predetermined height with the sea floor by driving the posture control device 230. do.
  • the flotation device 210 forms a jet of water on the bottom of the sea and floats manganese nodules on the bottom of the device into the inside of the device body 211.
  • the transfer device 220 may transfer the manganese nodules introduced by the flotation to the delivery device unit 300.
  • FIG. 4 is a perspective view showing the dispensing apparatus unit of FIG. 1.
  • a dispensing device unit 300 is installed at a rear end of the collecting device unit 200.
  • the sending device unit 300 is installed in the sending device connecting frame 530.
  • the sending device unit 300 includes a crushing device 310, a sending pump 320, a sending pipe 330, and a dump valve 340.
  • the shredding device 310 is provided with a receiving portion for temporarily receiving the manganese nodules conveyed by the transfer device 220. Although not shown in the drawings, the crushing gears are rotated in engagement with each other inside the receiving portion.
  • the manganese nodules accommodated in the receiving unit are crushed to a predetermined size or less by the crushing gear which is rotated by receiving power from the power control measurement unit 400.
  • the crushing method of manganese nodules may be any device that can crush the nodules to a certain size in addition to the above method.
  • the discharge pipe 330 is a pipe connected to the riser connected to the receiving portion and the external bus bar, and is a flow path through which the manganese nodules are crushed.
  • the delivery pump 320 is installed on the delivery pipe 330, receiving power from the power measurement control unit 400, the device for providing a power output so that the crushed manganese nodules are transferred along the delivery pipe 330 to be.
  • the dump valve 340 is additionally installed on the delivery pipe 330.
  • the sending device 300 may be to be discharged to the discharge pipe 330 after crushing the manganese nodules conveyed from the collecting device unit 200 to a predetermined size or less. .
  • the manganese nodules discharged to the delivery pipe 330 may be discharged to the bus bar.
  • FIG. 7 is a perspective view illustrating the buoyancy part and the launch / recovery part of FIG. 1.
  • the buoyancy unit 600 is installed at one or a plurality of upper ends of the body frame 550 of the above-described structural frame 500.
  • the buoyancy unit 600 is a device for maintaining an appropriate ground pressure of the light collecting robot of the present invention.
  • the launch / recovery unit 700 includes a lifting 710, a thruster direction control device 720, and an umbilical cable 730.
  • the lifting 710 is formed to protrude upward from the center top of the body frame 550.
  • the umbilical cable 730 is connected to the lifting 710.
  • the thruster direction control device 720 is installed on both sides of the body frame 550.
  • the power control measurement unit 400 includes a hydraulic power generator 410, a control valve device 420, a measurement sensor device 430, and a pressure compensation device 440. And the electrical and electronic device 450.
  • the apparatuses are apparatuses for controlling electronically and electronically, including power required for driving the above-mentioned driving apparatus 100, the collecting apparatus 200, and the delivery apparatus 300.
  • the deep sea manganese nodule condensing robot of the present invention is moved from the mother ship (not shown) to the bottom of the sea through a transport means not shown.
  • the end of the discharge pipe 330 is connected to the transfer pipe (not shown) connected to the bus bar.
  • the transfer pipe may be provided with a transfer control device and a transfer pump.
  • the deep sea manganese nodule concentrating robot according to the present invention is operated by seating on the sea bottom.
  • a plurality of traveling device parts 100 including a collecting device part 200 and a transmitting device part 300 are connected to each other in parallel.
  • the number of connections may be composed of two or more.
  • the traveling device unit 100 by configuring the traveling device unit 100 as described above detachable in parallel, it is possible to easily cope with the conditions of the seabed topography, and to easily secure the ground area at the bottom of the seabed forming a soft ground.
  • the sprocket 121 of the driving unit 120 is driven by the power measurement control unit 400.
  • the power measurement control unit 400 may variably set the rotational speed of the sprocket 121 of each drive unit 120.
  • the sprockets 121 for rotating the crawler 110 may achieve the same rotational speed, or may achieve different rotational speeds.
  • the light collecting device according to the present invention can go straight and turn on the sea floor.
  • the gap measurer measures the distance value with the sea floor in real time, and transmits it to the power control measurement unit 400.
  • the power measurement control unit 400 is a shaft 231a of the cylinder 231 of the posture control device 230 such that the interval value or height value between the device body 211 and the sea bottom of the flotation device 210 forms a reference interval value. Control the stretch operation.
  • the lower end of the device body 211 of the flotation device 210 may be located at a predetermined distance from the sea bottom at all times.
  • the present invention can control the separation distance between the irregular bottom surface and the bottom of the device body 211 of the flotation device 210 to always achieve a constant reference interval when the device is seated on the sea floor.
  • the water jet injection nozzle device 212 forms a water jet in the front and rear both sides of the lower end of the device body 211 of the flotation device 210.
  • the manganese nodules present on the sea bottom may be introduced into the device body 211 of the flotation device 210 by the water jet formed as described above.
  • the suspended nodules are transferred to the shredding device 310 by the conveying device 220.
  • the scraper of the transfer device 220 since the scraper of the transfer device 220 is formed with a plurality, it also serves to shake off the foreign matter formed on the nodules during the movement.
  • the nodules moved to be located above the shredding device 310 are delivered to the receiving portion.
  • the shredding device 310 shreds the nodules to a predetermined size or less.
  • the shredding device 310 is rotated by consisting of the shredding gear to be engaged with each other.
  • the crushing gear is connected to a rotating device (not shown), and the rotating device is rotated by receiving power from the power control measurement unit 400.
  • the manganese nodules are crushed to a certain size while passing between the rotating crushing gears engaged with each other.
  • the crushed manganese nodules are delivered to the delivery pipe 330.
  • the nodules crushed to a certain size delivered to the delivery pipe 330 is moved to the mother ship side.
  • the deep sea manganese nodule condensing robot of the present invention is driven by the above drive method.
  • the power control measurement unit 400 may control the driving of the collecting device unit 200 and the delivery device unit 300 installed in each of the traveling device unit 100 independently of each other.
  • each of the collecting device unit 200 and the sending device unit 300 of the present invention can collect the nodules on the bottom of the sea separately, thereby increasing the amount of manganese nodules collected per unit time.
  • the collecting device unit 200 and the sending device 300 may further include a buffer means (not shown) that can mitigate the impact when moving on the seabed.
  • the buffer means may be a multistage pipe.
  • the multi-stage pipe may be connected to the frame 130 of the traveling device 100.
  • the multi-stage pipe is a pipe having elastic springs (not shown) to enable elastic behavior.
  • the frame 130 of the traveling device 100 may be capable of elasticity up and down.
  • each of the collecting device unit 200 and the sending device unit 300 can be prevented from damage due to the impact generated when the collecting device is moved by the buffer means.
  • the embodiment according to the present invention can increase the ground area on the soft ground of the seabed by being configured to be detachable in parallel to the traveling device portion having the collecting device portion and the delivery device portion capable of individual drive control.
  • the embodiment according to the present invention can selectively adjust the number of the driving unit as described above according to the seabed terrain for the purpose of collection.
  • the embodiment of the present invention can drive a plurality of driving unit individually, by implementing a rotation speed differently, it is possible to significantly improve the difficulty of running at any position of the seabed terrain.
  • the embodiment according to the present invention can improve the overall collection amount by having a plurality of collecting device unit and the sending device unit for each traveling device unit.
  • traveling device 110 infinite track
  • shredding device 320 delivery pump
  • control valve device 430 measurement sensor device
  • connection frame of the power control measurement unit 550 body frame
  • buoyancy part 700 launching / recovery part
  • lifting 720 thruster direction control device
  • the present invention has an effect that can be connected to the traveling device portion having a collecting device portion and the sending device portion detachably in parallel with each other, to adjust the number of the traveling device portion according to the collection amount of the nodule to set the device.
  • the present invention has the effect that it is possible to replace any or a plurality of the traveling device unit as described above.
  • the present invention has the effect of increasing the ground area on the soft ground of the seabed.
  • the present invention has the effect of selectively adjusting the number of the traveling device portion having an endless track according to the seabed topography for collecting purposes.
  • the rotational speed can be implemented differently, thereby significantly improving the difficulty of traveling at any position of the seabed terrain.

Abstract

본 발명은 서로 병렬로 탈착 가능하도록 배치되는 다수의 주행장치부와; 상기 다수의 주행장치부의 전방부에 설치되며, 망간단괴를 채집하는 채집장치부와; 상기 다수의 채집장치부의 후방부에 설치되며, 채집되는 상기 망간단괴를 일정 크기로 파쇄하여 외부로 송출하는 송출장치부와; 상기 다수의 주행장치부의 상부에 설치되며, 상기 주행장치부로 동력을 제공하고, 상기 채집장치부 및 상기 송출장치부의 구동을 제어하는 동력제어계측부와; 상기 각 주행장치부를 연결하고, 상기 채집장치부와 상기 송출장치부 및 상기 동력제어계측부를 지지하는 구조프레임; 및 상기 구조 프레임의 상단에 설치되는 부력부를 포함하는 심해저 망간단괴 집광로봇을 제공한다.

Description

심해저 망간단괴 집광로봇
본 발명은 심해저 망간단괴 집광로봇에 관한 것으로서, 보다 상세하게는 서로 병렬로 연결가능하고, 망간단괴의 채집량에 따라 추가로 연장설치 가능한 로봇기능을 가지는 심해저 망간단괴 집광장치에 관한 것이다.
일반적으로, 토목업, 건설업, 농업 등에 사용되는 무한궤도 차량은 딱딱한 지표면 상에서 운행되므로 특별히 낮은 접지압이 요구되지는 않는바 무한궤도 폭이 상대적으로 좁다.
그러나, 심해저 연약지반, 니질 펄갯벌 등과 같은 점착성 연약지반에서 운행되는 무한궤도 차량은 지표면 아래로 무한궤도 차량이 패여 들어가는 것을 방지하기 위하여 낮은 접지압이 요구된다.
이를 해소하기 위한 선행 문헌으로는 대한민국특허청 등록특허공보 제10-0795667호가 있다.
상기 선행 문헌에는 기존의 점착성 연약지반 주행을 위한 무한궤도 차량의 무한궤도를 2열로 분리하고, 분리된 무한궤도 사이의 공간을 통하여 탑재 장비의 하중을 지지하는 지지프레임을 보강하여, 무한궤도 차량의 접지압을 줄임과 동시에 탑재 장비를 안정적으로 지지할 수 있는 무한궤도가 2열로 분리된 무한궤도 차량이 개시된다.
상기 선행 문헌에 언급되는 2열로 분리되는 무한궤도 차량을 사용하여 해저에 위치되는 단괴를 채집하는 경우, 접지압을 일정 이상 늘리기 어렵다.
또한, 상기 무한궤도 차량은 서로 독립적 구동의 제어가 어렵고, 해저에서의 서로 다른 위치에서 서로 다른 채집량을 갖는 채집 작업을 할 수 없는 문제점을 갖는다.
본 발명의 목적은 채집장치부와 송출장치부를 구비하는 주행장치부들을 병렬로 탈착 가능하도록 연결하여 망간단괴의 채집용량을 조절함과 동시에 전체 구조의 안전성과 적정 접지압을 유지할 수 있는 심해저 망간단괴 집광로봇을 제공함에 있다.
본 발명은 서로 병렬로 탈착 가능하도록 배치되는 다수의 주행장치부와; 상기 다수의 주행장치부 전단부에 설치되며, 망간단괴를 채집하는 채집장치부와; 상기 다수의 주행장치부 상부에 설치되며, 채집되는 상기 망간단괴를 일정 크기 이하로 파쇄하여 외부로 송출하는 송출장치부와; 상기 다수의 주행장치부에 설치되며, 상기 주행장치부로 동력을 제공하고, 상기 채집장치부 및 상기 송출장치부의 구동을 제어하는 동력제어계측부와; 상기 각 주행장치부를 연결하고, 상기 채집장치부와 상기 송출장치부 및 상기 동력제어계측부를 지지하는 구조프레임; 및 상기 구조 프레임의 상단에 설치되는 부력부를 포함하는 심해저 망간단괴 집광로봇을 제공한다.
상기 각 주행장치부는, 좌우로 서로 나란하게 배치되는 하나 또는 다수의 무한 궤도를 포함하는 것이 바람직하다.
상기 채집장치부는, 상기 각 주행장치부의 전단에 배치되며, 해저면에 물제트를 분사하여 상기 해저면에 위치되는 망간단괴를 부양시키고 내측으로 유도하는 부양장치와, 상기 부양장치와 연결되며, 상기 동력계측 제어부로부터 동력을 제공 받아, 부양된 상기 망간단괴를 상기 송출장치로 이송하는 이송장치와, 상기 동력계측 제어부로부터 동력을 제공 받아, 상기 부양장치의 하단과 상기 해저면이 기설정된 높이를 유지하도록 상기 부양장치를 승강시키는 자세제어장치와, 상기 자세제어장치가 설치되며, 상기 부양장치 및 상기 이송장치와 상기 구조프레임을 연결시키는 프레임을 구비하는 것이 바람직하다.
상기 부양장치에는, 상기 물제트 분사가 가능한 물제트 분사노즐장치와 유동안내판이 설치되는 것이 바람직하다.
상기 송출장치부는, 상기 동력계측제어부로부터 동력을 전달받아, 상기 채집장치부와 인접되며, 상기 이송장치에 의해 이송된 망간단괴를 일정 크기 이하로 파쇄하는 파쇄장치와, 상기 동력계측제어부로부터 동력을 전달 받아, 상기 파쇄장치와 연결되며, 파쇄된 상기 망간단괴를 송출하는 송출펌프와, 상기 송출장치와 연결되며, 송출된 상기 망간단괴를 외부로 송출하는 경로를 형성하는 송출배관과, 상기 송출배관 상에 설치되며, 상기 동력계측제어부로부터 동력을 전달받아, 상기 파쇄된 망간단괴의 송출과정에서 송출배관 및 송출펌프의 막힘 현상을 방지하는 덤프밸브를 구비하는 것이 바람직하다.
상기 구조프레임은, 상기 각 주행장치부를 탈착 가능하도록 연결하는 주행장치 연결프레임과, 상기 프레임과 연결되어, 상기 채집장치부를 지지하는 채집장치 연결프레임과, 상기 송출장치부를 지지하는 송출장치 연결프레임과, 상기 동력제어계측부를 지지하는 동력제어계측부 연결프레임과, 상기 주행장치 연결프레임, 상기 채집장치 연결프레임, 상기 송출장치 연결프레임 및 상기 동력제어계측부 연결프레임을 서로 연결하는 바디 프레임을 구비하는 것이 바람직하다.
상기 자세제어장치는, 상기 부양장치에 설치되는 간격 측정기로부터 상기 해저면과의 간격값을 전송 받아 상기 간격값을 기 설정되는 기준 간격값을 이루도록 상기 부양장치의 승강을 제어하는 것이 바람직하다.
본 발명은 채집장치부 및 송출장치부를 구비하는 주행장치부를 서로 병렬로 탈착 가능하게 연결하여, 단괴의 채집량에 따라 상기 주행장치부의 개수를 조절하여 장치를 설정할 수 있는 효과를 갖는다.
또한, 본 발명은 상기와 같은 주행장치부들 중 어느 또는 다수를 교체 가능하도록 할 수 있는 효과를 갖는다.
또한, 본 발명은 해저의 연약 지반 상에서 접지 면적을 증가시킬 수 있는 효과를 갖는다.
또한, 본 발명은 채집 목적의 해저 지형에 따라 무한궤도를 갖는 주행장치부의 개수를 선택적으로 조절할 수 있는 효과를 갖는다.
또한, 본 발명은 다수의 무한궤도를 개별적으로 구동시킬 수 있음에 따라, 회전 속도를 서로 다르게 구현하여, 해저 지형의 임의 위치에서 주행의 곤란성을 현저하게 개선할 수 있는 효과를 갖는다.
또한, 본 발명은 채집장치부 및 송출장치부를 장착한 다수의 주행장치부를 구비하도록 하여 전체적인 채집용량을 효과적으로 조절할 수 있는 효과를 갖는다.
도 1은 본 발명의 심해저 망간단괴 집광로봇의 구성을 보여주는 사시도이다.
도 2는 도 1의 주행장치부를 보여주는 사시도이다.
도 3은 도 1의 구조프레임을 보여주는 사시도이다.
도 4는 도 1의 채집장치부를 보여주는 사시도이다.
도 5는 도 1의 송출장치부를 보여주는 사시도이다.
도 6은 도 1의 동력제어계측부를 보여주는 사시도이다.
도 7은 도 1의 구조프레임, 부력부 및 진수/회수부를 보여주는 사시도이다.
도 8은 본 발명의 심해저 망간단괴 집광로봇을 보여주는 측면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 심해저 망간단괴 집광로봇을 설명하도록 한다.
도 1은 본 발명의 심해저 망간단괴 집광로봇의 구성을 보여주는 사시도이다. 도 2는 도 1의 주행장치부를 보여주는 사시도이다.
도 1을 참조하면, 본 발명의 심해저 망간단괴 집광로봇은 다수의 주행장치부(100)와, 채집장치부(200)와, 송출장치부(300)와, 동력제어계측부(400)와 구조프레임(500)과, 부력부(600)와, 진수/회수부(700)로 구성된다.
주행장치부 (100)
도 1 및 도 2를 참조하면, 상기 각 주행장치부(100)는 무한궤도(110)와, 구동장치(120)와, 프레임(130)으로 구성된다.
상기 프레임(130)은 서로 나란하게 배치될 수 있다. 상기 프레임(130)의 일단에는 구동장치(120)가 설치되고, 타단에는 아이들러(121)가 설치된다.
상기 구동장치(120)는 상기 동력계측제어부(400)로부터 동력을 전달 받아 회전된다.
상기 무한궤도(110)는 상기 구동장치(120)에 물려 상기 구동장치(120)의 회전에 의하여 회전되는 구성이며, 실질적으로 해저면에 접지된 상태에서 주행을 위하여 회전된다.
상기 각 주행장치부(100)는 병렬 연결되는 방향을 따라 배치된다.
상기 각 주행장치부(100)의 프레임(130)에는 하기에 기술되는 주행장치 연결프레임(510)이 관통 설치된다. 따라서, 상기 각 주행장치부(100)는 서로 병렬로 연결 가능할 수 있다.
본 발명에 따르는 각 주행장치부(100)는 독립적으로 무한궤도(110)를 구비한다. 또한, 상기 각 주행장치부(100)는 서로 병렬로 개수가 확장될 수 있도록 연결될 수 있다. 상기 각 주행장치부(100)는 동력계측제어부(400)로부터 동력을 전달 받아 독립적으로 구동될 수 있다.
구조프레임 (500)
도 6은 도 1의 구조프레임을 보여주는 사시도이다.
도 1 및 도 6을 참조하면, 상기 구조프레임(500)의 구성을 설명한다.
상기 구조프레임(500)은 주행장치 연결프레임(510)과, 채집장치 연결프레임(520)과, 송출장치 연결프레임(530)과, 동력제어계측부 연결프레임(540)와, 바디프레임(550)으로 구성된다.
상기 주행장치 연결프레임(510)은 각 주행장치부(100)를 병렬로 연결할 수 있도록 각 주행장치부(100)의 프레임(130)을 관통하여 연결한다.
상기 주행장치 연결프레임(510)의 관통 방향은 상기 각 주행장치부(100)가 연결되는 병렬 방향을 따를 수 있다.
도면에 도시되지는 않았지만, 상기 주행장치 연결프레임(510)은 볼트체결과 같은 방식이 채택될 수도 있고, 용접 방식이 채택될 수도 있다.
상기 채집장치 연결프레임(520)은 상기 채집장치부(200)를 지지한다. 상기 채집장치 연결프레임(520)은 상기 각 주행장치부(100)에 구비되는 프레임(130)의 전단에 설치된다.
상기 송출장치 연결프레임(530)은 상기 채집장치 연결프레임(520)의 후단에 위치되며, 상기 주행장치 연결프레임(510)의 상단에 설치된다. 상기 송출장치 연결프레임(530)은 상기 송출장치부(300)를 지지한다.
상기 동력제어계측부 연결프레임(540)은 상기 송출장치 연결프레임(530)의 후방에 위치되도록 상기 주행장치 연결프레임(510) 상에 설치된다. 상기 동력제어계측부 연결프레임(540)은 상기 동력제어계측부(400)를 지지한다.
상기 바디 프레임(550)은 상기 연결프레임들을 이음과 아울러, 상방으로 상기 동력제어계측부 연결프레임(540)을 에워싸도록 다수의 갈래를 이루어 형성된다. 상기 바디 프레임(550)의 일단과 타단은 주행장치 연결프레임(510)의 양단과 연결되어 지지될 수 있다.
상기 바디 프레임(550)의 상단에는 부력부(600) 및 진수/회수부(700)가 설치될 수 있다.
채집장치부 (200)
도 3은 상기 채집장치부를 설명한다.
도 1 및 도 3을 참조하면, 상기 채집장치부(200)는 상기 각 주행장치부(100)에 하나 또는 다수로 설치될 수 있다.
상기 채집장치부(200)는 상기 각 주행장치부(100)의 프레임(130) 전단에 설치되는 채집장치 연결프레임(520)에 의하여 지지된다.
상기 채집장치부(200)는 부양장치(210)와, 이송장치(220)와, 자세제어장치(230)와, 프레임(240)으로 구성된다.
상기 부양장치(210)는 하단이 개구되는 장치 몸체(211)와, 상기 장치 몸체(211)의 하단 양측에서 전/후방에 설치되는 물제트 분사노즐장치(212)를 구비한다.
상기 장치 몸체(211)의 상단에는 물제트를 공급하는 펌프(214)가 설치된다. 상기 펌프(214)는 상기 전/후방에 설치되는 각 물제트 분사노즐장치(212)로 분기되어 상기 펌프(214)로 인한 물유량을 전달하는 배관 라인(213)을 구비한다. 상기 펌프(214)는 동력제어계측부(400)로부터 동력을 전달 받아 구동된다.
도면에 도시되지는 않았지만, 상기 이송장치(220)는 상기 장치 몸체(211)의 내부에 설치되며, 다수의 기어들(미도시)로 연결되어 회전되는 좌우 한 쌍의 구동체인과, 상기 좌우 구동체인을 서로 연결하는 다수의 스크래퍼로 구성되는 컨베이어벨트와, 상기 컨베이어벨트의 형상을 구성하는 좌우 복수의 아이들러와, 좌우 한 쌍의 스프로켓으로 구성된다.
상기 이송장치는 상기 동력제어계측부(400)로부터 동력을 공급받아, 상기 컨베이어벨트를 기설정된 회전속도로 제어할 수 있다.
상기 자세제어장치(230)는 상기 동력계측제어부(400)로부터 동력을 제공 받아, 상기 부양장치(210)의 하단과 상기 해저면이 기 설정된 높이를 형성하도록 상기 부양장치(210)를 승강시킨다.
상기 프레임(240)은 상기 자세제어장치(230)가 설치되며, 상기 부양장치(210)와 상기 이송장치(220)를 연결하여 한 몸체를 이룬다. 상기 프레임(240)은 상기 자세제어장치(230)와 연결되어 상기 채집장치 연결프레임(520)에 고정 설치된다.
상기 자세제어장치(230)는 좌우 한 쌍의 평행사변형 링크와, 상기 동력계측제어부(400)로부터 동력을 전달받아, 상기 좌우 평행사변형 링크(232)의 운동을 제어하는 좌우 한 쌍의 유압실린더(231)로 구성된다.
상기 부양장치(210)에 설치되는 간격 측정기(미도시)로부터 상기 해저면과의 거리값을 전송 받아 상기 거리값을 기 설정되는 기준 거리값을 이루도록 상기 부양장치(210)의 승강을 제어한다.
상기 유압 실린더(231)는 상기 프레임(240)과 부양장치(210)의 장치몸체(211)를 힌지 연결한다. 상기 유압 실린더(231)는 신축 가능한 축(231a)을 갖는다.
따라서, 상기 축(231a)의 신장 여부에 따라 부양장치(210)는 승강동작될 수 있다.
이에 더하여, 상기 장치 몸체(211)와 상기 프레임(240)은 상기 승강동작시 상하로의 안정적인 이동 동작을 안내하는 링크(232)를 통하여 연결된다. 도 1의 채집장치부를 보여주는 사시도이다.
도 7을 참조하면, 본 발명에 따르는 채집장치부(200)에서, 자세제어장치(230)의 구동에 의하여 부양장치(210)의 장치 몸체(211)의 하단은 해저 지면과 일정의 높이를 형성한다.
그리고, 부양장치(210)는 해저면에 물제트 분사를 형성하여 해저면의 망간단괴를 장치 몸체(211)의 내측으로 부양하여 유입시킨다.
이때, 이송장치(220)는 상기 부양되어 유입된 망간단괴를 상기 송출장치부(300)로 이송할 수 있다.
송출장치부 (300)
도 4는 도 1의 송출장치부를 보여주는 사시도이다.
도 1 및 도 4를 참조하면, 상기 채집장치부(200)의 후단에는 송출장치부(300)가 설치된다. 상기 송출장치부(300)는 송출장치 연결프레임(530)에 설치된다.
상기 송출장치부(300)는 파쇄장치(310)와, 송출펌프(320)와, 송출배관(330)과, 덤프밸브(340)를 구비한다.
상기 파쇄장치(310)는 이송장치(220)에 의하여 이송된 망간단괴를 임시 수용하는 수용부를 구비한다. 도면에 도시되지는 안았지만, 수용부의 내부에는 서로 맞물려 회전되는 파쇄기어들이 설치된다.
따라서, 상기 수용부에 수용되는 망간단괴는 상기 동력제어계측부(400)으로부터 동력을 전달받아 회전되는 파쇄기어에 의하여 일정 크기 이하로 파쇄된다. 물론, 상기 망간단괴의 파쇄 방식은 상기 방식 이외에 단괴를 일정 크기로 파쇄할 수 있는 장치이면 모두 가능할 수 있다.
상기 송출배관(330)은 상기 수용부와 외부 모선과 연결되는 라이저와 연결되는 배관으로서, 상기 파쇄되는 망간단괴가 이송되는 유로이다.
상기 송출펌프(320)는 상기 송출배관(330)상에 설치되며, 동력계측제어부(400)로부터 동력을 전달 받아, 파쇄되는 망간단괴를 송출배관(330)을 따라 이송되도록 송출력을 제공하는 장치이다.
상기 송출배관(330) 상에는 덤프 밸브(340)가 추가 설치된다.
도 7을 참조 하면, 본 발명에 따르는 송출장치부(300)는 채집장치부(200)로부터 이송되는 망간단괴를 일정 크기 이하로 파쇄한 후, 송출배관(330)으로 배출될 수 있도록 할 수 있다.
따라서, 상기 송출배관(330)으로 배출되는 망간단괴는 모선으로 배출될 수 있다.
부력부(600) 및 진수/회수부(700)
도 7은 도 1의 부력부 및 진수/회수부를 보여주는 사시도이다.
도 1 및 도 7을 참조하면, 상기 부력부(600)는 상술한 구조프레임(500)의 바디 프레임(550)의 상단에 하나 또는 다수로 설치된다. 상기 부력부(600)는 본 발명의 집광로봇의 적정 접지압을 유지하기 위한 장비이다.
상기 진수/회수부(700)는 리프팅(710)과, 스러스터 방향제어장치(720)와, 엄빌리벌 케이블(730)로 구성된다.
상기 리프팅(710)은 바디 프레임(550)의 중앙 상단에 상측으로 돌출 형성된다.
상기 엄빌리벌 케이블(730)은 상기 리프팅(710)에 연결된다.
상기 스러스터 방향제어장치(720)는 상기 바디 프레임(550)의 양측에 설치된다.
또한, 도 5를 참조하면, 본 발명에 따르는 동력제어계측부(400)는 유압동력발생장치(410)와, 제어벨브장치(420)와, 계측센서장치(430)와, 압력보상장치(440)와, 전기전자장치(450)로 구성된다. 상기 장치들은 상술된 주행장치부(100), 채집장치부(200) 및 송출장치부(300)의 구동에 요구되는 동력을 비롯한 전기 전자적으로 제어하는 장치들이다.
다음은, 상기와 같은 구성을 갖는 집광로봇의 작용을 설명한다.
도 1 및 도 2를 참조 하면, 본 발명의 심해저 망간단괴 집광로봇은 모선(미도시)으로부터 도시되지 않은 이송 수단을 통하여 해저 바닥으로 이동된다.
여기서, 송출배관(330)의 단부는 모선과 연결되는 이송관(미도시)과 연결된다. 도면에 도시되지는 않았지만, 상기 이송관에는 이송제어장치 및 이송펌프가 구비될 수 있다.
본 발명에 따르는 심해저 망간단괴 집광로봇은 해저면에 안착하여 작동된다.
상기 집광로봇은 채집장치부(200) 및 송출장치부(300)를 구비하는 다수의 주행장치부(100)가 서로 병렬로 연결된다. 상기 연결 개수는 2개 이상으로 구성될 수도 있다.
본 발명에서는 상기와 같은 주행장치부(100)를 병렬로 탈착 가능하게 구성함으로써, 해저 지형의 조건에 용이하게 대응함과 아울러, 연약지반을 이루는 해저 바닥에서의 접지 면적을 용이하게 확보할 수 있다.
이어, 상기 구동장치부(120)의 스프로켓(121)은 동력계측제어부(400)에 의하여 구동된다. 그리고, 동력계측제어부(400)는 각 구동장치부(120)의 스프로켓(121)의 회전 속도를 가변 설정할 수 있다.
여기서, 무한궤도(110)를 회전시키는 스프로켓(121)은 서로 동일한 회전 속도를 이룰 수도 있고, 서로 다른 회전 속도를 이룰 수도 있다.
따라서, 각 무한궤도(110)의 회전 속도를 가변 조절함으로써, 본 발명에 따르는 집광장치는 해저 지면에서 직진과 선회가 가능하다.
또한, 간격 측정기는 해저면과의 간격 값을 실시간으로 측정하여, 이를 동력제어계측부(400)로 전송한다.
상기 동력계측제어부(400)는 부양장치(210)의 장치몸체(211)와 해저면과의 간격값 또는 높이값이 기준 간격값을 이루도록 자세제어장치(230)의 실린더(231)의 축(231a)을 신축 동작을 제어한다.
상기 실린더(231)의 신축 동작에 따라, 부양장치(210)의 장치몸체(211) 하단은 해저면으로부터 항상 일정 거리 이격되어 위치될 수 있다.
따라서,본 발명은 장치가 해저 지면에 안착되어 이동시에, 불규칙한 해저면과 상기 부양장치(210)의 장치몸체(211) 하단 사이의 이격 거리를 항상 일정한 기준 간격값을 이루도록 제어할 수 있다.
이와 동시에, 본 발명에 따르는 물제트 분사노즐장치(212)는 부양장치(210)의 장치몸체(211)의 하단 양측 전후방에서 물제트를 형성한다.
따라서, 해저면에 존재하는 망간단괴는 상기와 같이 형성되는 물제트에 의하여 부양장치(210)의 장치몸체(211) 내측으로 부양되어 유입될 수 있다.
이와 동시에, 상기 부양된 단괴는 이송장치(220)에 의하여 파쇄장치(310)로 이송된다.
이때, 상기 이송장치(220)의 스크래퍼는 다수의 채로 형성되기 때문에, 상기 이동 중에 단괴에 형성된 이물질을 털어내는 역할도 한다.
이와 같이 이물질이 털어내어지는 단괴는 채집 유로를 따라 이동되어 파쇄장치(310)의 상부에 위치된다.
상기 파쇄장치(310)의 상부에 위치되도록 이동된 단괴는 수용부로 전달된다.
상기 파쇄장치(310)는 상기 단괴를 일정 크기 이하로 파쇄한다.
상기 파쇄장치(310)는 서로 맞물림되는 파쇄기어로 구성되어 회전된다. 상기 파쇄기어은 회전 장치(미도시)와 연결되고, 상기 회전 장치는 동력제어계측부(400)로부터 동력을 전달 받아 회전된다.
따라서, 상기 망간단괴는 서로 맞물림되는 회전되는 파쇄기어들 사이를 통과하면서 일정 크기로 파쇄된다.
상기 파쇄되는 망간단괴는 송출배관(330)으로 전달된다.
그리고, 상기 송출배관(330)으로 전달된 일정 크기로 파쇄된 단괴는 모선 측으로 이동된다.
한편, 본 발명의 심해저 망간단괴 집광로봇은 상기와 같은 구동 방식으로 구동된다.
특히, 본 발명에 따르는 동력제어계측부(400)는 상기 각 주행장치부(100)에 설치되는 채집장치부(200) 및 송출장치부(300)의 구동을 서로 독립적으로 제어할 수도 있다.
따라서, 본 발명의 각 채집장치부(200) 및 송출장치부(300)는 해저면의 단괴를 개별적으로 채집할 수 있기 때문에, 단위 시간당 망간단괴의 채취량을 증가시킬 수 있다.
한편, 도면에 도시되지 않았지만, 본 발명에 따르는 채집장치부(200)와 송출장치부(300)는 해저에서 이동시 충격을 완화할 수 있는 완충 수단(미도시)을 더 구비할 수 있다. 상기 완충 수단은 다단의 파이프일 수 있다. 상기 다단의 파이프는 주행장치부(100)의 프레임(130)에 연결될 수도 있다.
상기 다단의 파이프는 탄성 스프링들(미도시)을 구비하여 탄성 거동이 가능한 파이프이다.
따라서, 주행장치부(100)의 프레임(130)은 상하로의 탄성 거동이 가능할 수 있다.
이에 따라, 각 채집장치부(200) 및 송출장치부(300)는 상기 완충 수단에 의하여 채집장치 이동시 발생되는 충격으로 인한 손상이 방지될 수 있다.
이에 따라, 본 발명에 따르는 실시예는 개별 구동 제어가 가능한 채집장치부 및 송출장치부를 갖는 주행장치부들을 병렬로 탈착 가능하도록 구성함으로써, 해저의 연약 지반 상에서 접지 면적을 증가시킬 수 있다.
또한, 본 발명에 따르는 실시예는 채집 목적의 해저 지형에 따라 선택적으로 상기와 같은 주행장치부의 개수를 조절할 수 있다.
또한, 본 발명에 따르는 실시예는 다수의 주행장치부를 개별적으로 구동시킬 수 있음에 따라, 회전 속도를 서로 다르게 구현하여, 해저 지형의 임의 위치에서 주행의 곤란성을 현저하게 개선할 수 있다.
또한, 본 발명에 따르는 실시예는 각 주행장치부 별 다수의 채집장치부 및 송출장치부를 구비하도록 하여 전체적인 채집량을 향상시킬 수 있다.
<부호의 설명>
100 : 주행장치부 110 : 무한궤도
120 : 구동장치 130 : 프레임
200 : 채집장치부 210 : 부양장치
220 : 이송장치 230 : 자세제어장치
240 : 프레임 300 : 송출장치부
310 : 파쇄장치 320 : 송출펌프
330 : 송출배관 340 : 덤프밸브
400 : 동력제어계측부 410 : 유압동력발생장치
420 : 제어밸브장치 430 : 계측센서장치
440 : 압력보상장치 450 : 전기전자장치
500 : 구조프레임 510 : 주행장치 연결프레임
520 : 채집장치 연결프레임 530 : 송출장치 연결프레임
540 : 동력제어계측부 연결프레임 550 : 바디 프레임
600 : 부력부 700 : 진수/회수부
710 : 리프팅 720 : 스러스터 방향제어장치
730 : 엄빌리벌 케이블
본 발명은 채집장치부 및 송출장치부를 구비하는 주행장치부를 서로 병렬로 탈착 가능하게 연결하여, 단괴의 채집량에 따라 상기 주행장치부의 개수를 조절하여 장치를 설정할 수 있는 효과를 갖는다.
또한, 본 발명은 상기와 같은 주행장치부들 중 어느 또는 다수를 교체 가능하도록 할 수 있는 효과를 갖는다.
또한, 본 발명은 해저의 연약 지반 상에서 접지 면적을 증가시킬 수 있는 효과를 갖는다.
또한, 본 발명은 채집 목적의 해저 지형에 따라 무한궤도를 갖는 주행장치부의 개수를 선택적으로 조절할 수 있는 효과를 갖는다.
또한, 본 발명은 다수의 무한궤도를 개별적으로 구동시킬 수 있음에 따라, 회전 속도를 서로 다르게 구현하여, 해저 지형의 임의 위치에서 주행의 곤란성을 현저하게 개선할 수 있는 효과를 갖는다.

Claims (8)

  1. 서로 병렬로 탈착 가능하도록 배치되는 다수의 주행장치부;
    상기 다수의 주행장치부 전단에 설치되며, 망간단괴를 채집하는 채집장치부;
    상기 다수의 주행장치부 상부에 설치되며, 채집되는 상기 망간단괴를 일정 크기 이하로 파쇄하여 외부로 송출하는 송출장치부;
    상기 다수의 주행장치부 상부에 설치되며, 상기 주행장치부로 동력을 제공하고, 상기 채집장치부 및 상기 송출장치부의 구동을 제어하는 동력제어계측부;
    상기 각 주행장치부를 연결하고, 상기 채집장치부와 상기 송출장치부 및 상기 동력제어계측부를 지지하는 구조프레임; 및
    상기 구조 프레임의 상단에 설치되는 부력부를 포함하는 것을 특징으로 하는 심해저 망간단괴 집광로봇.
  2. 제 1항에 있어서,
    상기 각 주행장치부는,
    좌우로 서로 나란하게 배치되는 다수의 무한궤도를 포함하는 것을 특징으로 하는 심해저 망간단괴 집광로봇.
  3. 제 1항에 있어서,
    상기 채집장치부는,
    상기 각 주행장치부의 전단에 배치되며, 해저면에 물제트를 분사하여 상기 해저면에 위치되는 망간단괴를 부양시키고 내측으로 유도하는 부양장치와,
    상기 부양장치와 연결되며, 상기 동력계측 제어부로부터 동력을 제공 받아, 부양된 상기 망간단괴를 상기 송출장치부로 이송하는 이송장치와,
    상기 동력계측 제어부로부터 동력을 제공 받아, 상기 부양장치의 하단과 상기 해저면이 기설정된 높이를 형성하도록 상기 부양장치 및 상기 이송장치를 승강시키는 자세제어장치와,
    상기 부양장치와 상기 이송장치를 하나로 연결하는 채집장치 프레임과,
    상기 자세제어장치가 설치되며, 상기 채집장치 프레임과 상기 구조프레임을 연결시키는 프레임을 구비하는 것을 특징으로 하는 심해저 망간단괴 집광로봇.
  4. 제 3항에 있어서,
    상기 부양장치에는,
    상기 물제트 분사가 가능한 물제트 분사노즐장치와 유동안내판이 설치되는 것을 특징으로 하는 심해저 망간단괴 집광로봇.
  5. 제 3항에 있어서,
    상기 이송장치에는,
    좌우 한 쌍의 구동체인과, 상기 좌우 한 쌍의 구동체인을 서로 연결하는 다수의 스크래퍼로 구성되는 컨베이어벨트와, 상기 컨베이어벨트의 형상을 구성하는 좌우 복수의 아이들러와 좌우 한 쌍의 스프로켓으로 형성되며,
    상기 동력계측제어부로부터 동력을 공급받아, 상기 컨베이어벨트를 기 설정된 회전속도로 제어하는 것을 특징으로 하는 심해저 망간단괴 집광로봇.
  6. 제 3항에 있어서,
    상기 자세제어장치는,
    좌우 한 쌍의 평행사변형 링크와, 상기 동력계측제어부로부터 동력을 전달받아, 상기 좌우 평행사변형 링크의 운동을 제어하는 좌우 한 쌍의 유압실린더로 구성되는 자세제어링크부로 형성되며,
    상기 부양장치에 설치되는 간격 측정기로부터 상기 해저면과의 거리값을 전송 받아 상기 거리값을 기 설정되는 기준 거리값을 이루도록 상기 부양장치의 승강을 제어하는 것을 특징으로 하는 심해저 망간단괴 집광로봇.
  7. 제 1항에 있어서,
    상기 송출장치부는,
    상기 동력계측제어부로부터 동력을 전달받아, 상기 채집장치부와 인접되며, 상기 이송장치에 의해 이송된 망간단괴를 일정 크기 이하로 파쇄하는 파쇄장치와,
    상기 동력계측제어부로부터 동력을 전달받아, 상기 파쇄장치와 연결되며, 파쇄된 상기 망간단괴를 송출하는 송출펌프와,
    상기 송출펌프와 연결되며, 송출된 상기 망간단괴를 외부로 송출하는 경로를 형성하는 송출배관과,
    상기 송출배관 상에 설치되며, 상기 동력계측제어부로부터 동력을 전달받아, 상기 파쇄된 망간단괴의 송출과정에서 송출배관 및 송출펌프의 막힘 현상을 방지하는 덤프밸브를 구비하는 것을 특징으로 하는 심해저 망간단괴 집광로봇.
  8. 제 1항에 있어서,
    상기 구조 프레임은,
    상기 각 주행장치부를 탈착 가능하도록 연결하는 주행장치 연결프레임과,
    상기 프레임과 연결되어, 상기 채집장치부를 지지하는 채집장치 연결프레임과,
    상기 송출장치부를 지지하는 송출장치 연결프레임과,
    상기 동력제어계측부를 지지하는 동력제어계측부 연결프레임과,
    상기 주행장치 연결프레임, 상기 채집장치 연결프레임, 상기 송출장치 연결프레임 및 상기 동력제어계측부 연결프레임을 서로 연결하는 바디 프레임을 구비하는 것을 특징으로 하는 심해저 망간단괴 집광로봇.
PCT/KR2012/008296 2012-03-28 2012-10-12 심해저 망간단괴 집광로봇 WO2013147379A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/387,200 US9334734B2 (en) 2012-03-28 2012-10-12 Robot for mining manganese nodules on deep seafloor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120031912A KR101263804B1 (ko) 2012-03-28 2012-03-28 심해저 망간단괴 집광로봇
KR10-2012-0031912 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013147379A1 true WO2013147379A1 (ko) 2013-10-03

Family

ID=48666130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008296 WO2013147379A1 (ko) 2012-03-28 2012-10-12 심해저 망간단괴 집광로봇

Country Status (3)

Country Link
US (1) US9334734B2 (ko)
KR (1) KR101263804B1 (ko)
WO (1) WO2013147379A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982830A1 (en) * 2014-08-06 2016-02-10 Korea Institute of Ocean Science and Technology Robot for mining manganese nodules on deep seafloor
CN105332708A (zh) * 2014-08-07 2016-02-17 韩国海洋科学技术院 深海底锰结核集光机器人
US9334734B2 (en) 2012-03-28 2016-05-10 Korea Institute Of Ocean Science & Technology Robot for mining manganese nodules on deep seafloor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101369830B1 (ko) 2012-08-31 2014-03-06 삼성중공업 주식회사 해저 자원 수집 장치 및 해저 자원 수집 방법
NL2012579C2 (en) * 2013-12-02 2015-06-03 Oceanflore B V Subsurface mining vehicle and method for collecting mineral deposits from a sea bed at great depths and transporting said deposits to a floating vessel.
KR101728136B1 (ko) * 2015-09-04 2017-04-19 한국해양과학기술원 심해저 광물 집광로봇의 채집장치부 제어장치 및 그 방법
CN105804755B (zh) * 2016-05-12 2018-03-02 江西理工大学 一种浮游式深海自动采矿机器人
CN107842367B (zh) * 2017-11-29 2024-03-22 长沙矿冶研究院有限责任公司 用于水力采集机构离地高度的控制系统、控制方法及多金属结核采矿车
CN110905027B (zh) * 2019-11-28 2021-11-09 哈尔滨工程大学 一种用于水下疏浚作业的清淤机器人
EP3889360A1 (en) * 2020-04-02 2021-10-06 Soil Machine Dynamics Limited Apparatus for removing material from a floor of a body of water
CN113719288B (zh) * 2021-11-03 2022-03-15 滨州学院 一种海底采矿机器人
CN115788441B (zh) * 2022-12-05 2023-07-21 青岛海洋地质研究所 一种海底爬行车及其爬行方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117658A (ja) * 1997-10-17 1999-04-27 Takashi Uesugi 海底掘削装置及び海底掘削方法
KR100795667B1 (ko) * 2006-10-17 2008-01-21 한국해양연구원 무한궤도가 2열로 분리된 무한궤도 차량
KR20110045135A (ko) * 2009-10-26 2011-05-04 삼성중공업 주식회사 심해저 광물의 채광로봇

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2238035B1 (ko) * 1973-07-18 1981-04-17 Commissariat Energie Atomique
US4391468A (en) * 1978-04-07 1983-07-05 Kamyr, Inc. Method and apparatus for recovering mineral nodules from the ocean floor
US4232903A (en) * 1978-12-28 1980-11-11 Lockheed Missiles & Space Co., Inc. Ocean mining system and process
US4484637A (en) 1979-01-19 1984-11-27 Cooper Industries, Inc. Positioning control system for rock drill support apparatus
DE2916469C2 (de) * 1979-04-24 1985-02-21 Klein, Schanzlin & Becker Ag, 6710 Frankenthal Unterwassermotorpumpe
JPS5949399B2 (ja) 1980-09-17 1984-12-03 有一 高橋 海底に堆積するマンガンボ−ルの採掘洗滌揚鉱装置
JPS5876696A (ja) 1981-10-30 1983-05-09 川崎重工業株式会社 マンガン団塊集鉱装置
JPH02164997A (ja) 1988-12-16 1990-06-25 Hitachi Zosen Corp 深海底用採鉱機
JP2008272684A (ja) 2007-04-27 2008-11-13 Komatsu Ltd フィーダ車
KR101183443B1 (ko) * 2010-03-02 2012-09-17 한국지질자원연구원 유속 및 농도 조절이 가능한 양광관과 집광기간의 연결관 장치
KR101133091B1 (ko) 2010-08-20 2012-04-04 재단법인 포항지능로봇연구소 청소로봇, 수중 청소장치 및 수중 청소방법
KR101263804B1 (ko) 2012-03-28 2013-05-13 한국해양과학기술원 심해저 망간단괴 집광로봇
KR101363248B1 (ko) 2013-07-02 2014-02-13 한국해양과학기술원 해저 광물 자원을 위한 채광 로봇의 광석 파쇄 장치
KR101391634B1 (ko) 2013-10-16 2014-05-12 한국해양과학기술원 코안다 효과를 이용하는 심해저 망간단괴 집광로봇

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117658A (ja) * 1997-10-17 1999-04-27 Takashi Uesugi 海底掘削装置及び海底掘削方法
KR100795667B1 (ko) * 2006-10-17 2008-01-21 한국해양연구원 무한궤도가 2열로 분리된 무한궤도 차량
KR20110045135A (ko) * 2009-10-26 2011-05-04 삼성중공업 주식회사 심해저 광물의 채광로봇

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI, JONG-SU ET AL.: "Application Study on FMEA(Failure Mode and Effect Analysis) for Waterjet-lifter of Deep-Sea Manganese Nodule Miner", JOURNAL OF OCEAN ENGINEERING AND TECHNOLOGY, vol. 23, no. 6, December 2009 (2009-12-01), pages 32 - 38 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9334734B2 (en) 2012-03-28 2016-05-10 Korea Institute Of Ocean Science & Technology Robot for mining manganese nodules on deep seafloor
EP2982830A1 (en) * 2014-08-06 2016-02-10 Korea Institute of Ocean Science and Technology Robot for mining manganese nodules on deep seafloor
CN105332708A (zh) * 2014-08-07 2016-02-17 韩国海洋科学技术院 深海底锰结核集光机器人

Also Published As

Publication number Publication date
US9334734B2 (en) 2016-05-10
US20150047233A1 (en) 2015-02-19
KR101263804B1 (ko) 2013-05-13

Similar Documents

Publication Publication Date Title
WO2013147379A1 (ko) 심해저 망간단괴 집광로봇
US4828339A (en) Crawler chain
US8201763B2 (en) Self-propelled crushing system
US4865185A (en) Crawler-mounted conveying train
US4758049A (en) Apparatus for the underground operation of a movable mining machine
US4773528A (en) Material transfer unit for ground-mounted FCT
NZ213032A (en) Sorting plant: plurality of conveyor carriages with independent drive means
CN105592928B (zh) 矿物材料加工设备以及用于操作加工设备的方法
CN101434346A (zh) 铲斗式装运机
WO2011129572A2 (ko) 지형 적응이 용이한 탱크로봇
CN110899190B (zh) 一种桥墩水下表面附着物清洗方法及水下作业机器人
CN113090267B (zh) 一种具有地形自适应功能的水力机械复合式深海采矿车
WO2011099662A1 (ko) 이중 구동 트랙과 프리휠 아암을 이용한 가변형 주행 시스템
CN207377603U (zh) 履带行走式皮带转载机
US4045086A (en) Pumpable product hydraulic mining apparatus and method
US8905487B2 (en) Mine equipment recovery system
EP2982830A1 (en) Robot for mining manganese nodules on deep seafloor
CN211594043U (zh) 一种移动式可弯曲带式转载机
CA2214159C (en) A machine for picking up bulk material lying on a track
CN211937326U (zh) 一种移动式颚破机
CN107032039B (zh) 自疏通矿用转载溜槽
CN207684385U (zh) 一种运煤皮带机清扫装置
CN211900584U (zh) 一种井工煤矿短壁工作面连续开采系统
CN209242018U (zh) 全封闭称重式带输送机
US2633974A (en) Extensible conveyer system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/02/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12872324

Country of ref document: EP

Kind code of ref document: A1