WO2016143043A1 - Detection device and power meter - Google Patents

Detection device and power meter Download PDF

Info

Publication number
WO2016143043A1
WO2016143043A1 PCT/JP2015/056860 JP2015056860W WO2016143043A1 WO 2016143043 A1 WO2016143043 A1 WO 2016143043A1 JP 2015056860 W JP2015056860 W JP 2015056860W WO 2016143043 A1 WO2016143043 A1 WO 2016143043A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
log
control device
level
communication
Prior art date
Application number
PCT/JP2015/056860
Other languages
French (fr)
Japanese (ja)
Inventor
雅思 佐藤
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to PCT/JP2015/056860 priority Critical patent/WO2016143043A1/en
Publication of WO2016143043A1 publication Critical patent/WO2016143043A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • G01R11/02Constructional details
    • G01R11/24Arrangements for avoiding or indicating fraudulent use

Definitions

  • the present invention relates to a detection device for detecting fraudulent acts on a watt-hour meter.
  • Patent Document 1 discloses a technique for reporting an abnormality when it is detected that a sealing screw for fixing a terminal cover to a watt hour meter is loosened.
  • Patent Document 1 With the technology of Patent Document 1, it is possible to detect fraudulent actions (for example, formation of fraudulent bypass wiring) that involve an opening operation of a watt hour meter cover, but it is difficult to detect fraudulent actions that do not involve an opening operation of a power system cover It is.
  • a smart meter is a device that measures and outputs (displays or transmits) electric energy in a digital manner, and includes a display unit, an external communication unit (optical port for infrared communication), and a processor.
  • the processor measures the amount of power supplied to the supply target based on a current sensor or the like, and displays (outputs) the amount of power by controlling the display unit. And the amount of power is transmitted (output) to an external device.
  • the processor that controls the display unit and the external communication unit transmits and receives signals to and from the display unit or the external communication unit.
  • the display unit and the external communication unit need to be visible from the outside, the display unit and the external communication unit are not protected by an electromagnetic shield. Therefore, although the smart meter processor itself is protected by an electromagnetic shield, it emits radio waves due to its large surface area and transmission / reception of signals to / from an external communication unit that is not protected by an electromagnetic shield. Or resistance to electrostatic discharge (ESD) is low.
  • ESD electrostatic discharge
  • an unauthorized person may perform an illegal act of temporarily causing radio wave emission or electrostatic discharge to hang up the smart meter processor.
  • the smart meter processor is hung up, the amount of power is not measured even if power is supplied. If the processor is hung up only by a short period of time due to radio emission or electrostatic discharge, but the processor is operating normally without radio emission or electrostatic discharge during other periods, there will be evidence of fraudulent activity. Hard to remain. Therefore, fraudulent acts due to radio wave emission and electrostatic discharge are a problem.
  • a radio wave sensor and an electrostatic sensor are attached to the smart meter, and data on the output values (sensor values) of these sensors A method of saving logs can be considered. This is because such a log can be a sign (evidence) of fraudulent acts caused by radio wave emission or electrostatic discharge.
  • the log must be recorded by the processor. If the smart meter processor hangs up due to radio wave emission or electrostatic discharge, not only the energy measurement stops, but also the log recording process stops. As a result, it is difficult to detect a log while the fraud is being performed, and it is difficult to detect the fraud.
  • An object of the present invention is to provide a detection device and a watt hour meter capable of detecting fraudulent acts on an ammeter due to radio wave emission or electrostatic discharge.
  • the present invention includes a first control device that transmits and receives a signal to and from a display unit for outputting electric energy or an external communication port and measures the electric energy.
  • a detection device that is housed in a watt-hour meter and detects fraudulent acts on the watt-hour meter, and a plurality of sensors including at least a radio wave sensor and an electrostatic sensor are different from the first control device.
  • a second control device that is a circuit board and transmits and receives signals to and from the first control device, wherein the second control device outputs output information indicating a height of an output value for each of the plurality of sensors.
  • the first control device transmits and receives signals to and from the display unit or the external communication port, while the second control device transmits and receives signals to and from the display unit or the external communication port. Since the signal transmission / reception is not performed, the second control device is more resistant to radio wave emission or electrostatic discharge than at least the first control device. Therefore, even if radio wave emission or electrostatic discharge is performed on the watt hour meter and the first control device hangs up, the hang up to the second control device is suppressed. Therefore, since the second control device can generate the sensor log while the first control device is hung up due to fraud due to radio wave emission or electrostatic discharge, it is possible to leave a trace of fraud due to radio wave emission or electrostatic discharge. The first effect is that the fraud can be detected.
  • the sensor log is generated not only while the first control device is hung up but also during normal operation. It is not easy to identify the person unless it is a skilled meter reader (log analyst). This is because (1) the sensor log is simply a history of output information (output value level, etc.) that indicates the height of the sensor output value. It is difficult to identify, and (2) the log of the period that combines the normal operation period and the hang-up period is enormous. This is because it is difficult for a meter reader who is unfamiliar with the analysis work.
  • the second control device when the first control device hangs up and a communication disabled period occurs with the first control device, the second control device generates the sensor log generated during the communication disabled period.
  • a behavior estimation log indicating the type of fraud estimated from the above is generated.
  • the meter reader need only analyze the behavior estimation log ignoring the sensor log when verifying the presence and type of fraud, and the behavior estimation log indicates the type of fraud.
  • the second effect is that even an inexperienced meter reader can easily perform the analysis work.
  • FIG. 1 It is a block diagram which shows schematic structure of the watt-hour meter which concerns on one Embodiment of this invention. It is a block diagram which shows schematic structure of the security sensor shown in FIG. It is a figure which shows the external appearance of the security sensor shown in FIG. It is the figure which showed the relationship between the threshold value applied to the sensor value of a radio wave sensor, and a level, and the figure which showed an example of the sensor log of a radio wave sensor.
  • the amount of electric power measured by the first control device, the operating state of the first control device, the state of communication between the first control device and the second control device, and the log stored in the first storage unit It is explanatory drawing which showed this relationship. It is the schematic diagram which showed an example of the action estimation log.
  • FIG. 6 is a schematic diagram showing first to fourth behavior estimation tables used in behavior estimation log generation processing. It is a flowchart which shows the flow of the whole process of the 2nd control apparatus of a security sensor. It is a flowchart of the subroutine of the initialization process of S2 of FIG. It is a flowchart of the subroutine of the sensor process of S3 of FIG. FIG.
  • FIG. 14 shows the first half of a flowchart showing a subroutine of the sensor log generation process in S57 of FIG. The latter half part is shown among the flowcharts which show the subroutine of the sensor log production
  • FIG. 1 is a block diagram showing a schematic configuration of a watt-hour meter according to an embodiment of the present invention.
  • the watt-hour meter 100 is a smart meter that measures the amount of power supplied to a power supply target (for example, a house) via a three-phase AC transmission line P1 to P3 by a digital method. is there.
  • the watt-hour meter 100 includes current sensors CT1 and CT3, a voltage dividing circuit 102, a power supply circuit 103, a display unit 104, an external communication unit 105, an RTC 106, and a first storage unit. 107, a first control device 108, and a security sensor 109.
  • the current sensor CT1 is a sensor that detects the current value IP1 of the power transmission line P1
  • the current sensor CT3 is a sensor that detects the current value IP3 of the power transmission line P3.
  • the voltage dividing circuit 102 is a sensor that detects a voltage value VP1 of the transmission line P1 and a voltage value VP3 of P3 of the transmission line.
  • the power supply circuit 103 is a power supply that supplies power to each hardware included in the watt-hour meter 100.
  • the display unit 104 is a display device that is electrically connected directly to the first control device 108 and that displays and outputs the amount of power under the control of the first control device 108.
  • a liquid crystal display device is used as the display unit 104.
  • the display unit 104 is attached to the watt hour meter 100 so as to be visible from the outside of the watt hour meter 100. This is because the meter reader or the like visually recognizes the content displayed on the display unit 104.
  • the external communication unit (external communication port) 105 is a light receiving / emitting element (optical port) that is electrically connected directly to the first control device 108 and performs infrared communication by being controlled by the first control device 108. .
  • the external communication unit 105 is attached to the watt-hour meter 100 so as to be visible from the outside. This is because the infrared communication device possessed by the meter reader is arranged opposite to the external communication unit 105 so that infrared communication can be performed between the infrared communication device and the watt-hour meter 100.
  • the first storage unit 107 is a storage area for storing information.
  • an EEPROM registered trademark; Electrically Erasable Programmable Read-Only Memory
  • storage part 107 is performed by the 1st control apparatus 108.
  • FIG. 1st control apparatus 108 FIG.
  • the first control device 108 is a control circuit board that controls each hardware of the watt-hour meter 100. Specifically, a processor (for example, a CPU (Central Processing Unit)) that executes processing according to a program is used.
  • a processor for example, a CPU (Central Processing Unit)
  • CPU Central Processing Unit
  • the first control device 108 includes a power calculation unit 111, a display control unit 112, an external communication processing unit 114, and a first log processing unit 113.
  • the first control device 108 is hardware, but the blocks 111 to 114 included in the first control device 108 are functional blocks that indicate software functions executed by the first control device 108.
  • the power calculation unit 111 uses the detection values of the current sensors CT1 and CT3 and the voltage dividing circuit 102 to calculate (measure) the amount of power supplied to the power supply target via the transmission lines P1 to P3. It is a block that performs.
  • the power calculation unit 111 obtains the instantaneous power amount of the transmission line P1 by multiplying the current value IP1 and the voltage value VP1, and multiplies the current value IP3 and the voltage value VP3 to obtain the instantaneous power value of the transmission line P3.
  • the amount of power is obtained by time-integrating the sum of the instantaneous power value of the transmission line P1 and the instantaneous power value of the transmission line P3.
  • the power calculation unit 111 calculates the amount of power in the predetermined period every time a predetermined period (for example, 10 minutes) elapses, stores the amount of power in the predetermined period in the first storage unit 107, and stores it in the display control unit 112. introduce.
  • a predetermined period for example, 10 minutes
  • the power calculation unit 111 obtains a monthly or daily power amount (or a total power amount) by integrating the power amount for each predetermined period, and stores the power amount in the first storage unit 107.
  • the display control unit 112 is a block that controls the display unit 104.
  • the display control unit 112 causes the display unit 104 to display the amount of power transmitted from the power calculation unit 111 for a predetermined period.
  • the display control unit 112 displays the daily power amount and the monthly power amount stored in the first storage unit 107 on the display unit 104 in accordance with a command (operator command) input from the outside. It may be like this.
  • the first log processing unit (unauthorized control unit) 113 refers to data (sensor value) sent from the security sensor 109 described later, and a sensor log (abnormality detection log) indicating a history of sensor value (output value) level ) Is generated and recorded in the first storage unit 107. Processing for generating a sensor log (see FIG. 4B) will be described later.
  • the external communication processing unit 114 is a block that controls the external communication unit 105.
  • the external communication processing unit 114 When the meter reader of the watt-hour meter 100 places the infrared communication device close to and opposite to the external communication unit 105 and operates the infrared communication device to transmit the data extraction command to the external communication unit 105 by infrared, the external communication processing unit 114. Receives the data extraction command via the external communication unit 105.
  • the external communication processing unit 114 reads the data stored in the first storage unit 107 and transmits the data to the infrared communication device via the external communication unit 105 by infrared. .
  • the data transmitted to the infrared communication device by the external communication processing unit 114 is data related to the amount of power, a sensor log (see FIG. 4B), and an action estimation log (see FIG. 6).
  • the meter reader can periodically extract data and logs (sensor log, action estimation log) regarding the electric energy stored in the watt-hour meter 100.
  • the sensor log and behavior estimation log will be described later.
  • the RTC 106 is a real-time clock that outputs time information indicating the current time including the date and time and the hour, minute, and second. Note that the RTC 106 is always connected with a backup battery (not shown), and therefore does not stop due to a power failure or the like, and always outputs accurate time information.
  • the first controller 108 recognizes the current time based on the time information of the RTC 106.
  • a second control device 207 (see FIG. 2) of the security sensor 109, which will be described later, acquires time information of the RTC 106 from the first control device 108 when the security sensor 109 is activated, and the acquired current time is a timer (not shown). The current time is recognized based on this timer.
  • FIG. 2 is a block diagram showing hardware included in the security sensor 109 shown in FIG.
  • FIG. 3 is an external view of the security sensor 109.
  • FIG. 3 (a) is a perspective view showing the front of the security sensor 109.
  • FIG. 3B is a perspective view showing the back surface of the security sensor 109.
  • FIG. 3C is a top view of the security sensor 109.
  • FIG. 3D is a front view of the security sensor 109.
  • FIG. 3E is a side view of the security sensor 109.
  • FIG. 3F is a rear view of the security sensor 109.
  • FIG. 3G is a bottom view of the security sensor 109.
  • the security sensor 109 is a detection device for detecting an illegal act on the watt hour meter 100 and is attached to the inside of the watt hour meter 100.
  • the security sensor 109 is detachable from the watt hour meter 100.
  • the security sensor 109 includes a radio wave sensor 201, an electrostatic sensor 202, a magnetic sensor 203, an acceleration sensor 204, a temperature sensor 205, a second storage unit 206, and a second control device 207.
  • the security sensor 109 has a resin package (housing) 109a shown in FIG. 3A, and the package 109a accommodates the members 201 to 207 shown in FIG.
  • the radio wave sensor 201 is a sensor that outputs a sensor value AD1 that correlates with the amount of radio waves in a frequency band that causes radio interference (EMI) with respect to an electronic device. Specifically, when an illegal act of emitting radio waves is performed in order to hang up the processor that measures the amount of power (the first control device 108 in this embodiment), the sensor value AD1 output from the radio wave sensor 201 becomes high. Become.
  • the electrostatic sensor (ESD Surge sensor) 202 is a sensor that outputs a sensor value AD2 corresponding to an increase in charge when a charge surge phenomenon occurs in the watt-hour meter 100. Specifically, a charge surge phenomenon occurs in the watt-hour meter 100 when a fraudulent act of discharging static electricity is performed to hang up the processor (first control device 108 in this embodiment) that measures the amount of power.
  • the sensor value AD2 becomes high.
  • the magnetic sensor 203 is a sensor that outputs a sensor value AD3 correlated with the magnitude of the magnetic field. Specifically, when an illegal act of bringing the magnet close to the watt hour meter 100 is performed for the purpose of stopping the functions of the current sensors CT1 and CT3, the sensor value AD3 output from the magnetic sensor 203 increases. Note that if the current sensors CT1 and CT3 stop functioning, the power calculation unit 111 cannot measure the amount of power, resulting in theft.
  • the acceleration sensor 204 is a sensor that outputs a sensor value AD4 that correlates with the acceleration of the security sensor 109. Specifically, when an illegal act of applying an impact to the watt-hour meter 100 with a drill or the like for the purpose of breaking the cover of the watt-hour meter 100, the sensor value AD4 output from the acceleration sensor 204 becomes high. Become.
  • the temperature sensor 205 is a sensor that outputs a sensor value AD5 correlated with the ambient temperature. Specifically, when the cover of the watt hour meter 100 is ignited for the purpose of breaking the cover of the watt hour meter 100, the sensor value AD5 output from the temperature sensor 205 increases.
  • the second storage unit 206 is a storage area for storing information, and a flash memory is used in this embodiment. Reading and writing of information with respect to the second storage unit 206 is executed by the second control device 207.
  • the second control device 207 is a control circuit board separate from the first control device 108, and is a processor (for example, CPU) that controls each hardware of the security sensor 109.
  • the second control device 207 receives the sensor values of the sensors 201 to 205, refers to the sensor values, generates a sensor log (abnormality detection log) indicating the history of the sensor value level, and generates a second storage unit. Save to 206.
  • the second control device 207 transmits (transfers) the sensor values received from the sensors 201 to 205 to the first control device 108.
  • the first log processing unit 113 receives the sensor value sent from the security sensor 109 (that is, the second control device 207), and based on the sensor value.
  • the sensor log is generated and stored in the first storage unit 107.
  • the processing content of the sensor log generation processing in the second control device 207 and the processing content of the sensor log generation processing in the first control device 108 are the same. Therefore, while both the first control device 108 and the second control device 207 are operating normally, the first control device 108 and the second control device 207 perform the process of generating sensor logs having the same contents as each other. A sensor log with the same content is generated. Therefore, the sensor log stored in the first storage unit 107 and the sensor log stored in the second storage unit 206 during the normal operation of both the first control device 108 and the second control device 207 are the same. It is.
  • watt hour meters In general, watt hour meters must be designed so that the operator can visually recognize the display unit and external communication unit (optical port) from the outside. It has not been. Since the display unit and the external communication unit are hardware with a large surface area, when radio wave emission or electrostatic discharge is performed on the watt hour meter, control is performed to transmit / receive signals to / from the display unit or external communication unit. Radio waves or static electricity is easily transmitted to the circuit (processor) via the wiring between the display unit and the external communication unit. Therefore, a control circuit that transmits and receives signals to and from the display unit or the external communication unit is likely to hang up and has low resistance to radio waves or static electricity.
  • the first control device 108 that transmits and receives signals to and from the display unit 104 or the external communication unit 105 of the watt hour meter 100 has low resistance to radio wave emission or electrostatic discharge, and If radio waves are emitted or electrostatic discharge is performed, hang-up is likely to occur.
  • the second control device 207 of the present embodiment does not transmit / receive signals to / from the display unit and the external communication unit, and the first control device 108, the second storage unit 206, and the sensors 201 to 205 It is designed to send and receive signals between. Therefore, the second control device 207 is highly resistant to radio wave emission or electrostatic discharge (at least higher than the first control device 108) and hangs even if radio wave emission or electrostatic discharge is performed on the watt-hour meter 100. It is hard for an up. The reason is as follows.
  • the wiring that connects circuit boards such as control devices and storage devices is designed to suppress the transmission of radio waves and static electricity, so the display unit or external communication unit and circuit that are not protected by electromagnetic shielding
  • the influence of radio waves and static electricity is suppressed compared to the wiring connecting the substrate. Therefore, even if radio wave emission or electrostatic discharge is performed on the watt-hour meter 100, radio wave or static electricity is easily transmitted from the display unit 104 or the external communication unit 105 to the first control device 108. It is difficult to transmit from the control device 108 to the second control device 207.
  • the second control device 207 transmits and receives signals to and from the sensors 201 to 205.
  • the sensors 201 to 205 are extremely small in size and surface area compared to the display unit 104 or the external communication unit 105. Very small. Therefore, even if radio wave emission or electrostatic discharge is performed on the watt-hour meter 100, radio wave or static electricity is easily transmitted from the display unit 104 or the external communication unit 105 having a large surface area to the first control device 108. In addition, it is difficult for radio waves or static electricity to be transmitted from the sensors 201 to 205 having a small surface area to the second controller 207. Therefore, the second control device 207 is highly resistant to radio wave emission or electrostatic discharge (at least higher than the first control device 108) and hangs even if radio wave emission or electrostatic discharge is performed on the watt-hour meter 100. It is hard for an increase to occur.
  • the second control device 207 can continue normal operation. During this period, the first control device 108 cannot generate the sensor log because it cannot receive the sensor value from the second control device 207, but the second control device 207 can generate the sensor log.
  • the second control device 207 includes a sensor value acquisition unit 301, a communication control unit 302, and a second log processing unit 303.
  • the second control device 207 is hardware (CPU), but each of the blocks 301 to 303 included in the second control device 207 is a functional block indicating a function of software executed by the second control device 207.
  • the sensor value acquisition unit 301 is a block that controls each of the sensors 201 to 205 and simultaneously acquires the sensor values of the sensors 201 to 205 at regular intervals.
  • the communication control unit 302 is a block that performs communication with the first control device 108. Specifically, the communication control unit 302 transmits (transfers) the sensor values of the sensors 201 to 205 acquired by the sensor value acquisition unit 301 to the first control device 108.
  • the communication control unit 302 is configured to monitor the communication state of the first control device 108. Specifically, the communication control unit 302 detects (determines) the start time and the end time of the communication disabled period when a communication disabled period occurs with the first control device 108.
  • the communication disabled period is, for example, that the first control device 108 and the second control are performed when radio waves are emitted or electrostatic discharge is performed on the watt hour meter 100 and the first control device 108 is hung up. Examples include a period during which communication with the device 207 is disabled.
  • the second log processing unit 303 refers to the sensor values of the sensors 201 to 205 acquired by the sensor value acquisition unit 301, and generates a sensor log (see FIG. 4B) for each of the sensors 201 to 205. Perform the generation process.
  • the second log processing unit 303 when a communication impossible period with the first control device 108 occurs, the second log processing unit 303 returns to a state in which communication with the first control device 108 is possible, and then from the sensor log in the communication disabled period. Action estimation log generation processing for generating an action estimation log is performed. Note that the behavior estimation log generated by the second log processing unit 303 is transmitted to the first control device 108 by the communication control unit 302.
  • threshold value 1 and threshold value 2 higher than threshold value 1 are set for each sensor 201-205. Further, level 0 is initially set as the sensor value level for each of the sensors 201 to 205.
  • the second log processing unit 303 determines for each of the sensors 201 to 205 whether or not a change in the level of the acquired sensor value has occurred.
  • the second log processing unit 303 records a sensor log indicating the correspondence between the recording time and the level information.
  • the recording time is the time when the sensor log indicating the recording time is recorded.
  • the level information is information indicating the type of sensor to be processed and the level after the change.
  • FIG. 4A is a graph showing the relationship between the threshold value 1 (Rad_Th1) and threshold value 2 (Rad_Th2) applied to the sensor value of the radio wave sensor 201 and the level
  • FIG. 4B is the radio wave sensor.
  • FIG. 6 is a schematic diagram illustrating an example of a sensor log 201.
  • the second log processing unit 303 determines that the sensor value of the radio wave sensor 201 acquired by the sensor value acquisition unit 301 is level 0 (Lv0) when the sensor value is less than or equal to the threshold value 1, and the sensor value exceeds the threshold value 1 and is less than or equal to the threshold value 2 In this case, it is determined as level 1 (Lv1), and when the sensor value exceeds the threshold value 2, it is determined as level 2 (Lv2).
  • the second log processing unit 303 determines whether or not the currently determined level of the radio wave sensor 201 has changed from the previously determined level (or the initially set level), and the level changes. If not, the sensor log is not recorded.
  • the second log processing unit 303 records a sensor log indicating the correspondence between the recording time and the level information.
  • the recording time is the time when the sensor log indicating the recording time is recorded.
  • the level information is information indicating the type of sensor to be processed and the level after the change.
  • the sensor values of the five sensors 201 to 205 are simultaneously acquired by the sensor value acquisition unit 301. If it is determined that the sensor value level of the radio wave sensor 201 has changed, the sensor log of the radio wave sensor 201 is detected. As a result, the correspondence between the recording time and the level information is recorded.
  • (B) of FIG. 4 is an example of a sensor log of the radio wave sensor 201.
  • “2015.02.23 16: 03: 23.266” in the sensor log indicated by reference numeral 500 is the recording time of the sensor log.
  • “Lv1 RadioWave” is level information
  • “RadioWave” is the type of sensor to be processed (radio wave sensor 201)
  • “Lv1” is the level after the change.
  • the second log processing unit 303 similarly creates a sensor log for each of the sensors 202 to 205 other than the radio wave sensor 201. That is, in FIG. 4B, the sensor log of the radio wave sensor 201 is shown as a representative example, but a sensor log similar to the sensor log shown in FIG. 4B is provided for each of the sensors 202 to 205 other than the radio wave sensor 201. It is to be created.
  • the second log processing unit 303 sets the sensors 201 to 205 as processing targets in order, and sensor values of the processing target sensors. It is determined whether or not the level has changed, and when it is determined that the level has changed, a sensor log of the determination target sensor is generated and recorded.
  • the recording time, the type of sensor to be processed (static sensor 202), and the level after the change (of the electrostatic sensor 202) are recorded as a sensor log of the electrostatic sensor.
  • the correspondence relationship with the level information indicating the sensor value level) is recorded.
  • the recording time, the type of sensor to be determined (magnetic sensor 203), and the level after the change (magnetic sensor 203) are recorded as a sensor log of the magnetic sensor 203.
  • the correspondence relationship with the level information indicating the sensor value level) is recorded.
  • the sensor time of the acceleration sensor 204 is recorded as the recording time, the type of sensor to be determined (acceleration sensor 204), and the level after the change (acceleration sensor 204). The correspondence relationship with the level information indicating the sensor value level) is recorded.
  • the sensor time of the temperature sensor 205 is recorded as the recording time, the type of sensor to be determined (temperature sensor 205), and the level after the change (temperature sensor 205). The correspondence relationship with the level information indicating the sensor value level) is recorded.
  • the second log processing unit 303 creates a sensor log for each of the sensors 201 to 205 and stores it in the second storage unit 206.
  • the level information indicating the type and level of the sensor is associated with the recording time.
  • the attached sensor log is recorded.
  • level information indicating the type and level of the sensor and the recording time each time a level change occurs are recorded in the sensor log.
  • the sensor values of the respective sensors 201 to 205 acquired simultaneously by the sensor value acquisition unit 301 are not only used for the sensor log generation process in the second log processing unit 303 but also the first control by the communication control unit 302. Transferred to device 108. Then, the first log processing unit 113 of the first control device 108 acquires the sensor values of the respective sensors 201 to 205 transferred from the communication control unit 302, and uses the sensor values to use the second log processing unit 303. The same process as the sensor log generation process is executed, and the sensor log for each sensor generated in the process is stored in the first storage unit 107. Therefore, while both the first control device 108 and the second control device 207 are operating normally, the same sensor log is recorded in the first storage unit 107 and the second storage unit 206.
  • FIG. 5 shows the amount of electric power measured by the first control device 108, the state (operation state) of the first control device 108, and the state of communication between the first control device 108 and the second control device 207.
  • FIG. 6 is an explanatory diagram showing a relationship with a log stored in the first storage unit 107.
  • the second control device 207 continues normal operation, but the first control device 108 may hang up. . As shown in FIG. 5, while the first control device 108 is hung up, not only the amount of power is not measured, but also the second control device 207 cannot communicate with the first control device 108.
  • the sensor values of the sensors 201 to 205 are not transmitted from the second control device 207 to the first control device 108, and the first control device 108 itself is operating normally in the first place. Therefore, the sensor log creation process by the first control device 108 is not performed. Therefore, as shown in FIG. 5, during the normal operation period of the first control device 108, the first control device 108 records the sensor log in the first storage unit 107, but the first control device 108. During the hang-up, the sensor log generation processing by the first control device 108 is not performed, and the sensor log is not recorded in the first storage unit 107.
  • the security sensor 109 since the security sensor 109 is attached to the watt-hour meter 100, the second control of the security sensor 109 is performed even while the first control device 108 is hung up due to an illegal act. Since the device 207 generates a sensor log, information (level change log while being hung up) indicating that the illegal act has been performed can be left.
  • storage part 206 during the hang-up of the 1st control apparatus 108 is sent to the 1st control apparatus 108 after the 1st control apparatus 108 returns, and memorize
  • the sensor log is analyzed for the period of the normal operation period and the hang-up period, but it is not a skilled meter reader to identify fraud from the sensor log of the period of the normal operation period and the hang-up period. Not as easy as possible. This is because (1) the sensor log is simply a history of sensor value levels, and it is difficult for meter readers unfamiliar with log analysis to specify from the sensor log to the type of fraud. (2) Normal operation This is because it is difficult for a meter reader who is unfamiliar with analysis work to identify a log suspected of fraudulent activity from the enormous log because the log of the period including the period and the hang-up period is enormous.
  • the second control device 207 when communication with the first control device 108 is disabled (when the first control device 108 hangs up), the second control device 207 is in a normal communication state from the communication disabled period. After returning to, the behavior estimation log is generated from the sensor log generated during the communication disabled period.
  • the behavior estimation log is a log showing a correspondence relationship between the fraud information indicating the type of fraud estimated from the sensor log and the recording time.
  • the recording time is the recording time of the sensor log that is the basis for the estimation of fraud indicated in the fraud information associated with the recording time.
  • the second control device 207 returns to a normal communication state (a state in which communication with the first control device 108 can be normally performed) from a communication disabled period (a period in which communication with the first control device 108 is disabled), and then a communication disabled period.
  • a behavior estimation log is generated from the sensor log generated in step (1). Then, the second control device 207 transmits the sensor log and the behavior estimation log during the communication disabled period to the first control device 108, and the first control device 108 records the sensor log and the behavior estimation log in the first storage unit 107. .
  • the sensor log of the normal period and the hang-up period and the action estimation log during the hang-up period are recorded.
  • the meter reader can periodically collect the sensor log and the action estimation log stored in the first storage unit 107. Therefore, for the meter reader, when verifying the existence and type of fraud, it is only necessary to ignore the sensor log and analyze only the behavior estimation log. Therefore, even a meter reader who is unfamiliar with the analysis work can easily perform the analysis work.
  • FIG. 7 is a diagram illustrating a sensor log recorded during the communication disabled period.
  • FIG. 8 is an explanatory diagram showing a process of generating the behavior estimation log shown in FIG. 6 from the sensor log shown in FIG.
  • FIG. 9 is a schematic diagram illustrating a correction table used in the behavior estimation log generation process.
  • FIG. 10 is a schematic diagram showing first to fourth behavior estimation tables used in the behavior estimation log generation process.
  • the communication control unit 302 monitors the communication state of the first control device 108. Specifically, when a communication disabled period occurs between the first control device 108 and the second control device 207, the communication control unit 302 detects the start time and end time (return time) of the communication disabled period. It has become.
  • the second log processing unit 303 of the second control device 207 starts a behavior estimation log generation process corresponding to the communication disabled period when the communication control unit 302 detects the end of communication disabled period (at the time of return). .
  • a collecting process for collecting sensor logs during a communication disabled period is first performed, and then a noise removing process, a correcting process, and a converting process shown in FIG. 8 are sequentially performed.
  • the second log processing unit 303 extracts (collects) sensor logs belonging to the communication disabled period whose recording time is detected by the communication control unit 302 from the sensor logs recorded in the second storage unit 206.
  • the second log processing unit 303 uses a sensor log generated for each of the five sensors 201 to 205 between the start and end of the communication disabled period in which the recording time is detected by the communication control unit 302. Collect the logs to which it belongs.
  • FIG. 7 shows sensor logs belonging to a certain communication disabled period collected by the second log processing unit 303.
  • the collected sensor logs (sensor logs belonging to the communication disabled period) are not classified according to the type of sensor indicated in the level information, but are arranged regardless of the type of sensor. However, the recording times are sorted in order from the past.
  • “Lv1” indicates level 1 and “Lv2” indicates level 2.
  • “RadioWave” indicates the radio wave sensor 201
  • “ESD Surge” indicates the electrostatic sensor 202
  • “Magnet” indicates the magnetic sensor 203
  • “Acceleration” indicates the acceleration sensor 204.
  • the second log processing unit 303 sets the highest level sensor log for each type of sensor indicated in the level information among the collected sensor logs. , And a noise removal step of deleting (excluding) other sensor logs is performed (see FIG. 8).
  • FIG. 8A is a schematic diagram in which the sensor logs (sensor logs belonging to a certain communication disabled period) A to L shown in FIG. 7 are arranged along the time axis of the recording time.
  • FIG. 8B shows that the sensor logs B, C, E, G, H, K, and L remain after the noise removal processing is performed on the sensor logs A to L shown in FIG. FIG.
  • “Acc” is an abbreviation for “Acceleration”
  • Magn is an abbreviation for “Magnet”
  • “Rad” is an abbreviation for “RadioWave”
  • “Sur” is “ESD Surge”. Is an abbreviation.
  • the highest level sensor log is left for each type of sensor indicated in the level information. Erased (excluded).
  • This noise removal process is a measure for compressing and compacting the action estimation log that is finally generated by deleting in advance the sensor log that is considered to be noise (that is, the sensor log that is not related to fraud). .
  • the second log processing unit 303 performs a correction process using the correction table of FIG. 9 after the noise removal process shown in FIG. Hereinafter, the correction process will be described.
  • the level change of the sensor value of the radio wave sensor 201 indicates radio wave emission
  • the level change of the sensor value of the electrostatic sensor 202 indicates ESD.
  • the time of the sensor value level change of the radio wave sensor 201 is very close to the time of the sensor value level change of the electrostatic sensor 202 and the level of the sensor value after the change is the same, rather than radio wave emission or ESD. High possibility of jamming emission.
  • the time of the level change of the radio wave sensor 201 and the time of the level change of the electrostatic sensor 202 are very close and the sensor value level of one sensor is different from the sensor value level of the other sensor, the higher level Although the sensor value is highly accurate, the sensor value with the lower level is likely to be noise.
  • the correction table shown in FIG. 9 is stored in the second storage unit 206 in advance, and the second log processing unit 303 performs the correction process using the correction table.
  • the correction table is a table showing the correspondence between the correction target sensor log pair and the corrected sensor log.
  • the correction target sensor log is shown as a pair, while the corrected sensor log is shown as a single, but this is corrected to a single corrected sensor log. It means that.
  • row 401 in FIG. 9 indicates that the pair of “Sur Lv2” and “RadvLv2” is corrected to “JamvLv1”, and the single “Sur Lv2” is corrected to “Jam Lv1”. It does not indicate that “Rad“ Lv2 ”alone is corrected to“ Jam Lv1 ”. Also, for example, row 402 in FIG. 9 indicates that the pair of “Sur Lv1” and “Rad Lv2” is corrected to “Rad Lv2”, and the single “Sur Lv1” is changed to “Rad Lv2”. It does not indicate that it is corrected, and it does not indicate that a single “Rad Lv2” is corrected to “Rad Lv2”.
  • Jam is a symbol indicating an interference wave. That is, “Jam Lv1” or “Jam Lv2” shown in FIG. 9 in the sensor log indicates not the type of sensor but the content of fraud (disturbance wave is emitted to the watt-hour meter 100).
  • the first control device 108 hangs up as in the case of electromagnetic wave emission and electrostatic discharge).
  • the conditions for establishing a pair of correction target sensor logs in each row of the correction table of FIG. 9 are as follows. On the time axis of the recording time in FIG. 8B, the left log of the correction target sensor log pairs in each row of the correction table of FIG. 9 is located at a point in time earlier than the right log, and both logs are adjacent to each other. It is a condition that the difference between the recording times of both logs is within a first predetermined time (for example, within 1 sec or 500 msec).
  • the second log processing unit 303 searches for a pair of correction target sensor logs shown in the correction table of FIG. 9 from all the sensor logs arranged on the time axis shown in FIG. 8B. When the same pair as the pair shown in FIG. 9 is extracted, the second log processing unit 303 corrects the pair into a corrected sensor log associated with the pair in the correction table.
  • the sensor log shown in (b) of FIG. 8 is corrected to the sensor log shown in (c) of FIG. 8 by performing a correction process using the correction table of FIG. That is, the pair of the sensor log indicated by reference sign G and the sensor log indicated by reference sign H is corrected to the sensor log indicated by reference sign H1.
  • the recording time is processed with priority from the past.
  • the first sensor log, the second sensor log, and the third sensor log are arranged on the time axis of the recording time shown in FIG. 8B, and the recording time is selected from the first to third sensor logs. Is the first sensor log, the second is the second sensor log, and the third sensor log is closest to the current time.
  • the first sensor log and the second sensor log satisfy the condition of the correction target sensor log pair shown in the correction table of FIG. 9, and the second sensor log and the third sensor log are corrected in FIG.
  • the pair is formed with the recording time prioritized from the past. That is, the first sensor log and the second sensor log are preferentially handled as a pair, and the second sensor log and the third sensor log are not handled as a pair.
  • the first sensor log, the second sensor log, the third sensor log, and the fourth sensor log are arranged on the time axis of the recording time in FIG.
  • the one with the oldest recording time is the first sensor log
  • the next past is the second sensor log
  • the next past is the third sensor log
  • the fourth sensor log is Assume the situation that is closest to the present time.
  • the first sensor log and the second sensor log satisfy the conditions of the correction target sensor log pair shown in the correction table of FIG. 9, and the second sensor log and the third sensor log are in the correction table of FIG.
  • the correction target sensor log pair condition shown is satisfied and the third sensor log and the fourth sensor log correspond to the correction target sensor log pair shown in the correction table of FIG.
  • the recording time is given priority from the past.
  • a pair is formed. That is, the first sensor log and the second sensor log are preferentially handled as a pair, and the second sensor log and the third sensor log are not handled as a pair.
  • the third sensor log forms a pair with the fourth sensor log.
  • the second log processing unit 303 performs the conversion process using the four behavior estimation tables shown in FIG. 10 after the correction process shown in FIG. Hereinafter, the conversion process will be described.
  • the fraud information in FIG. 10 indicates the fraud and the level indicating the accuracy of the fraud.
  • the fraud information “Impulse wave emission after impact is applied Lv4” is shown. Indicates fraud, and “Lv4” indicates accuracy. The higher the level, the higher the accuracy.
  • each behavior estimation table shown in FIG. The second log processing unit 303 converts the sensor log into the behavior estimation log shown in FIG. 6 using the correspondence relationship between the sensor log pattern and the fraud information shown in each behavior estimation table. A conversion process is performed.
  • each behavior estimation table in FIG. 10 will be described.
  • a row in which a sensor log pair is shown as a sensor log pattern indicates that the pair is converted into fraud information.
  • row 501 of the first behavior estimation table shown in FIG. 10A indicates that the pair of “Acc Lv2” and “Jam Lv2” is converted to “jamming wave emission Lv4 after application of impact”. It does not indicate that a single “Acc Lv2” is converted to “jamming wave emission ⁇ ⁇ Lv4” after an impact is applied, but a single “Jam Lv2” is “jamming wave emission Lv4” after an impact is applied. It is not shown that it is converted to.
  • each behavior estimation table in FIG. 10 the row in which the sensor log is shown alone as the sensor log pattern indicates that the single sensor log is converted into fraud information.
  • the row 502 of the first behavior estimation table in FIG. 10A shows that “Jam Lv2” is converted to “jamming wave emission Lv2”.
  • the sensor log in which “Jam” is shown indicates an illegal act instead of the type of sensor (“Jam” indicates the meaning of the jamming wave). That is, the rows 502 and 503 of the first behavior estimation table in FIG. 10A are merely converted from information indicating fraud to information indicating the same fraud, and the level value itself also changes. As a result, the actual contents are not converted. However, for other lines, the sensor log pattern indicating the sensor type has been converted into fraud information, or the sensor log indicating the sensor type and the sensor log indicating the fraud (Jam) Since the pair is converted into fraudulent information, it is accompanied by substantial conversion of contents.
  • the conditions for establishing a pair of sensor logs shown in each row of each behavior estimation table in FIG. 10 are as follows. On the time axis of the recording time in FIG. 8C, the left log of the pair of sensor logs shown in each row of each action designation table in FIG. The condition is that they are adjacent to each other and the difference between the recording times of both logs is within a second predetermined time (for example, within 15 minutes). Note that the second predetermined time is set longer than the first predetermined time (for example, 1 sec or 500 msec) which is a condition for establishing a pair shown in the correction table of FIG.
  • the first predetermined time is a time set for detecting a situation in which the radio wave sensor 201 and the electrostatic sensor 202 are changing levels almost simultaneously, whereas the second predetermined time is determined by the same unauthorized person. This is because the time is set for detecting a series of frauds (for example, an act of emitting radio waves after applying an impact with a drill).
  • the first to fourth behavior estimation tables are prepared, but the conversion process is not performed using all the behavior estimation tables at the same time. They will be used in order.
  • the highest priority is the first behavior estimation table in FIG. 10A
  • the second highest priority is the second behavior estimation table in FIG.
  • the third action estimation table in FIG. 10C has a higher priority
  • the fourth action estimation table in FIG. 10D has the lowest priority.
  • the second log processing unit 303 first selects the first behavior estimation table from the first to fourth behavior estimation tables, and performs processing for converting the sensor log into fraudulent information. Specifically, the pattern shown in the first behavior estimation table in FIG. 10A is searched from all the sensor logs arranged on the time axis shown in FIG. When the pattern shown in the behavior estimation table in FIG. 10A is extracted, the second log processing unit 303 identifies the pattern as the fraud information associated with the pattern in the first behavior estimation table. Convert to
  • the second log processing unit 303 performs the same processing as the processing by the first behavior estimation table using the second behavior estimation table after finishing the processing by the first behavior estimation table as described above. . Moreover, after finishing the process by the 2nd action estimation table, the 2nd log process part 303 performs the process similar to the process by the 1st action estimation table using a 3rd action estimation log. Furthermore, after finishing the process by the 3rd action estimation table, the 2nd log process part 303 performs the process similar to the process by the 1st action estimation table using a 4th action estimation log.
  • each sensor log shown in (c) of FIG. 8 is converted into each fraud information as shown in (d) of FIG. become.
  • the pair of the sensor log indicated by reference sign B and the sensor log indicated by reference sign C is converted into fraud information indicated by reference sign B1
  • the pair of the sensor log indicated by reference sign E and the sensor log indicated by reference sign H1 is
  • the sensor log indicated by reference sign K1 is converted into the fraud information shown by reference numeral L1
  • the sensor log indicated by reference sign K1 is converted by the cheating information indicated by reference sign L1.
  • the second log processing unit 303 generates, as an action estimation log, a log indicating a correspondence relationship between the fraud information generated in this way and the recording time indicated in the sensor log corresponding to the fraud information.
  • FIG. 6 is an action estimation log created from the fraud information of FIG.
  • the communication control unit 302 transmits the sensor log during the communication disabled period and the behavior estimation log generated from the sensor log to the first control device 108.
  • FIG. 11 is a flowchart showing the overall processing flow of the second control device 207.
  • FIG. 12 is a flowchart of a subroutine of the initialization process in S2 of FIG.
  • FIG. 13 is a flowchart of the sensor processing subroutine of S3 of FIG. 14A to 14B are flowcharts showing a subroutine of the sensor log generation process in S57 of FIG.
  • FIG. 15 is a flowchart showing a subroutine of action estimation log generation processing in S62 of FIG.
  • the second control device 207 When the power is turned on (S1), the second control device 207 performs the initialization process of FIG. 12 (S2), and then repeats the sensor process of FIG. 13 (S3).
  • the second control device 207 sets two threshold values (threshold value 1 and threshold value 2) for each of the sensors 201 to 205 (S21 to S25).
  • Rad_Th1 is the threshold value 1 of the radio wave sensor 201
  • Rad_Th2 is the threshold value 2 of the radio wave sensor 201.
  • Sur_Th 1 is the threshold value 1 of the electrostatic sensor 202
  • Sur_Th 2 is the threshold value 2 of the electrostatic sensor 202.
  • Mag_Th1 is the threshold value 1 of the magnetic sensor 203
  • Mag_Th2 is the threshold value 2 of the magnetic sensor 203.
  • Acc_Th1 is the threshold value 1 of the acceleration sensor 204
  • Acc_Th2 is the threshold value 2 of the acceleration sensor 204
  • Tem_Th1 is the threshold value 1 of the temperature sensor 205
  • Tem_Th2 is the threshold value 2 of the temperature sensor 205.
  • the second control device 207 resets the sensor value level to zero for each of the sensors 201 to 205 (S26 to S30).
  • Rad_Dtct of S26 is the level of the radio wave sensor 201
  • Sur_Dtct of S27 is the level of the electrostatic sensor 202
  • Mag_Dtct of S28 is the level of the magnetic sensor 203
  • Acc_Dtct of S29 is the level of the acceleration sensor 204
  • Tem_Dtct in S30 is the level of the temperature sensor 205.
  • the second control device 207 resets the level to zero for each of the sensors 201 to 205 and displays the level 0 level information in S26 to S30. Is stored in the second storage unit 206.
  • the second control device 207 resets the transmission failure measurement counter used in the sensor processing of S3 to zero (S31), and sets a transmission failure threshold that is a threshold of the transmission failure measurement counter. (S32). Note that SendNgCnt in S31 is a transmission failure measurement counter, and SendNg in S32 is a transmission failure threshold.
  • the second control device 207 resets the transmission success flag used in the sensor process of S3 to zero (S33), and sets the host stop flag used in the sensor process of S3 to zero. Reset (S34). Note that SendOk in S33 is a transmission success flag, and HostStop in S34 is a host stop flag.
  • the sensor process shown in FIG. 13 is a subroutine of S3 in FIG.
  • the second control device 207 acquires sensor values from each of the radio wave sensor 201, the electrostatic sensor 202, the magnetic sensor 203, the acceleration sensor 204, and the temperature sensor 205 (S51).
  • RadAD indicates the sensor value of the radio wave sensor 201
  • SurAD indicates the sensor value of the electrostatic sensor 202
  • MagAD indicates the sensor value of the magnetic sensor 203
  • AccAD indicates the sensor value of the acceleration sensor 204
  • TemAD indicates the temperature.
  • the sensor value of the sensor 205 is indicated.
  • AD1 to AD5 are values output from the sensors 201 to 205 as shown in FIG.
  • the second control device 207 transmits the sensor values of the sensors 201 to 205 acquired in S51 to the first control device 108 (S52).
  • “host” indicates the first control device.
  • the second control device 207 determines whether or not the transmission process of S52 is successful (S53). If second control device 207 determines that transmission is successful (YES in S53), it sets a transmission success flag to 1 (S54), and the process proceeds to S57.
  • second control device 207 determines that the transmission has failed (NO in S53), it increments the transmission failure measurement counter by 1 (S55) and sets the transmission success flag to zero (S56). The process proceeds to S57.
  • the second control device 207 executes a sensor log generation process.
  • the sensor log generation process is a process for generating a sensor log as shown in FIG. 4B for each of the sensors 201 to 205 as described above. The flowchart of the sensor log generation process will be described in detail later.
  • the second controller 207 determines whether or not the host stop flag is 1 (S58). When determining that the host stop flag is not 1 (NO in S58), second control device 207 determines whether or not the transmission failure measurement counter exceeds the transmission failure threshold (S59). If the transmission failure measurement counter does not exceed the transmission failure threshold (NO in S59), the second control device 207 repeats the sensor process of FIG. 13 from the beginning (S3 of FIG. 11). On the other hand, when the transmission failure measurement counter exceeds the transmission failure threshold (YES in S59), the second control device 207 sets the host stop flag to 1 (S60), and then performs the sensor process of FIG. Is repeated from the beginning (S3 in FIG. 11). Note that the second control device 207 stores the time when the host stop flag is set to 1 in S60 as a memory (not shown) as the start of the communication disabled period (see FIG. 8).
  • the second controller 207 determines whether or not the transmission success flag is 1 (S61). If the transmission success flag is not 1 (NO in S61), the second control device 207 repeats the sensor process of FIG. 13 from the beginning (S3 of FIG. 11).
  • the second control device 207 performs an action estimation log generation process for the communication disabled period (S62). A flowchart of the action estimation log generation process will be described later.
  • the second control device 207 detects the time when YES is determined in S61 as the end of the communication disabled period. Further, when the host stop flag is set to 1 in S60, the start time of the communication disabled period is recorded. Thus, the second control device 207 detects the start time and end time of the communication disabled period.
  • the second control device 207 resets the host stop flag to zero (S63), and repeats the sensor processing of FIG. 13 from the beginning (S3 of FIG. 11).
  • the sensor log generation process of FIGS. 14A and 14B is a subroutine of S57 of FIG.
  • sensor log generation processing of the radio wave sensor 201 is performed (S101 to S111), then sensor log generation processing of the electrostatic sensor 202 is performed (S201 to S211), and then the magnetic sensor 203.
  • Sensor log generation processing is performed (S301 to S311), then the sensor log generation processing of the acceleration sensor 204 is performed (S401 to S411), and finally the sensor log generation processing of the temperature sensor 205 is performed (S501 to S511). ) Is performed.
  • sensor log processing (S101 to S111) of the radio wave sensor 201 sensor log generation processing (S201 to S211) of the electrostatic sensor 202, sensor log generation processing (S301 to S311) of the magnetic sensor 203, and sensor log generation of the acceleration sensor 204
  • the processing (S401 to S411) and the sensor log generation processing (S501 to S511) of the temperature sensor 205 are the same as each other, except that the processing target sensor and the threshold used are different. Therefore, hereinafter, sensor log generation processing (S101 to S111) of the radio wave sensor 201 will be described, and description of sensor log generation processing of other sensors will be omitted.
  • the second control device 207 determines whether or not the sensor value of the radio wave sensor 201 acquired in S51 of FIG. 13 exceeds the threshold 2 (S101). If the threshold value 2 is exceeded (YES in S101), it is determined whether the sensor value level has changed (S103). In S103, since the level when the threshold value 2 is exceeded is 2, the level change is determined by determining whether the current radio wave sensor level (Rad_Dtct) is not level 2. ing.
  • the second control device 207 When determining that the level has not changed in S103, the second control device 207 ends the sensor log generation processing of the radio wave sensor 201, and proceeds to the sensor log generation processing of the electrostatic sensor 202 after S201 (NO in S103). ). On the other hand, when determining that the level has changed in S103 (YES in S103), the second control device 207 records a sensor log indicating that the processing target is the radio wave sensor 201 and is level 2. (S106). The sensor log also shows the recording time.
  • FIG. 4B is a sensor log of the radio wave sensor 201.
  • the second control device 207 sets the level (Rad_Dtct) of the radio wave sensor 201 to level 2 (S109), ends the sensor log generation processing of the radio wave sensor 201, and the sensor log of the electrostatic sensor 202 after S201. Transition to generation processing.
  • the second control device 207 determines whether the sensor value of the radio wave sensor 201 exceeds the threshold value 1 (S102). ). If threshold value 1 is exceeded (YES in S102), second control device 207 determines whether the level of the sensor value has changed (S104).
  • the second control device 207 ends the sensor log generation process of the radio wave sensor 201 and proceeds to the sensor log generation process of the electrostatic sensor 202 after S201. To do.
  • the second control device 207 records a sensor log indicating that the processing target is the radio wave sensor 201 and is level 1. (S107).
  • the second control device 207 sets the level (Rad_Dtct) of the radio wave sensor 201 to level 1 (S110), ends the sensor log generation processing of the radio wave sensor 201, and the sensor log of the electrostatic sensor 202 after S201. Transition to generation processing.
  • the second control device 207 determines whether the level of the sensor value has changed (S105).
  • the second control device 207 ends the sensor log generation process of the radio wave sensor 201 and proceeds to the sensor log generation process of the electrostatic sensor 202 after S201. To do.
  • the second control device 207 records a sensor log indicating that the processing target is the radio wave sensor 201 and is level 0. (S108).
  • the second control device 207 sets the level (Rad_Dtct) of the radio wave sensor 201 to level 0 (S111), ends the sensor log generation processing of the radio wave sensor 201, and the sensor log of the electrostatic sensor 202 after S201. Transition to generation processing.
  • S101 to S111 are sensor log processing of the radio wave sensor 201.
  • sensor log generation processing (S201 to S211) of the electrostatic sensor 202 is performed after the sensor log processing of the radio wave sensor 201, but the parameters (sensor value, threshold value, level, etc.) used are merely replaced with those of the electrostatic sensor 202.
  • the processing contents are the same for the sensor log processing of the radio wave sensor 201 and the sensor log processing of the electrostatic sensor 202. That is, S201 to S211 are the same processes as S101 to S111, respectively.
  • the sensor log generation process (S301 to S311) of the magnetic sensor 203, the sensor log generation process (S401 to S411) of the acceleration sensor, and the sensor log generation process (S501 to S511) of the temperature sensor are also used for each sensor.
  • the processing content itself is the same as the sensor log processing of the radio wave sensor 201 only by replacing it. That is, S301 to S311 are processes similar to S101 to S111, S401 to S411 are processes similar to S101 to S111, and S501 to S511 are processes similar to S101 to S111, respectively. It is.
  • a sensor log for each of the sensors 201 to 205 is generated. 13 including the sensor log generation process of S57 is repeated (FIG. 11), the sensor log for each of the sensors 201 to 205 is accumulated in the second storage unit 206.
  • the action designation log generation process of FIG. 15 is a subroutine of S62 of FIG. A communication disabled period occurs with the first control device 108, and immediately after the communication disabled period ends, the process proceeds to the action estimation log generation process of FIG.
  • the recording time is between the start point and the end point of the communication disabled period before S ⁇ b> 701, although not shown in FIG. 15. Is collected (see FIG. 7).
  • the second control device 207 performs a noise removing process that leaves the highest level sensor log for each of the sensors 201 to 205 among the collected sensor logs. Subsequently, in S702, the second control device 207 performs a correction process for correcting the sensor log using a correction table (see FIG. 9) as shown in FIG.
  • the second control device 207 performs a conversion step of converting the sensor log into fraudulent information using the first behavior estimation table of FIG. 10A, and in S704, the second control device 207. Performs a conversion process of converting the sensor log into fraud information using the second behavior estimation table of FIG. 10B, and in S705, the second control device 207 performs the third process of FIG. In step S706, the second control device 207 uses the fourth behavior estimation table of FIG. 10D to convert the sensor log into a fraudulent act. A conversion process for converting to information is performed.
  • the second control device 207 generates, as an action estimation log, a log indicating the correspondence between the fraud information obtained in this way and the recording time indicated in the sensor log corresponding to the fraud information,
  • the sensor log during the communication disabled period and the behavior estimation log are transmitted to the first control device 108 (S707). Thereby, the action estimation log generation process ends, and the process proceeds to S63 in FIG.
  • the second control device 207 transmits the sensor log and the behavior estimation log during the communication disabled period to the first control device 108, and then deletes the sensor log during the communication disabled period from the second storage unit 206, and the behavior estimation log. May be stored in the second storage unit 206. In this case, the storage capacity can be saved. However, the behavior estimation log may be stored in the second storage unit 206 while the sensor log of the communication disabled period is left in the second storage unit 206.
  • FIG. 16 is a flowchart showing the overall processing flow of the first control apparatus 108.
  • the first control device 108 performs an initialization process (S12).
  • the initialization process in S12 has the same contents as S21 to S31 in FIG. Here, S32 to S35 are not performed.
  • the first control device 108 receives the sensor values of the sensors 201 to 205 from the security sensor 109 (S13), and generates a sensor log based on the sensor values acquired in S13 (S14). ) And are repeated alternately.
  • the sensor log generation process of S14 is the same process as the sensor log generation process (S57) of FIG. That is, the first control device 108 generates a sensor log by performing the same processing as the sensor log generation processing (FIGS. 14A and 14B) performed by the second control device 207. Note that the first control device 108 is configured to save information (such as a sensor log) generated in the sensor log generation process in the first storage unit 107.
  • the first control device 108 hangs up to cause a communication disabled period between the first control device 108 and the second control device 207, and then the first control device 108. Is returned to the normal state and communication becomes possible, the sensor log and the behavior estimation log in the communication disabled period are transmitted from the second control device 207 to the first control device 108. The first control device 108 The estimation log is received and stored in the first storage unit 107.
  • the second control device 207 when the first control device 108 hangs up and a communication disabled period occurs with the first control device 108, the second control device 207 generates the communication disabled period.
  • the behavior estimation log indicating the type of fraud estimated from the sensor log thus generated is generated.
  • the meter reader need only analyze the behavior estimation log ignoring the sensor log when verifying the presence and type of fraud, and the behavior estimation log indicates the type of fraud. Even an inexperienced meter reader can easily perform analysis work.
  • an action estimation log indicating a series of fraudulent acts by the same unauthorized person is generated from sensor values of different sensor pairs (FIG. 10).
  • an action estimation log indicating an illegal act such as “radiation of radio waves after applying an impact” can be generated from the sensor value of the acceleration sensor 204 and the sensor value of the radio wave sensor 201. It is possible to increase the types (variations) of possible misconduct.
  • the sensor value level is shown as output information indicating the height of the sensor value, but instead of the sensor value level as the output information.
  • the sensor value itself may be indicated. However, in this case, it is necessary to appropriately modify each table so that the tables of FIGS. 9 and 10 can be used even with sensor values.
  • the sensor log (FIG. 4B) of this embodiment may include a sensor value in addition to the sensor value level.
  • the sensor value of the radio wave sensor 201 is included in addition to the recording time and level information shown in FIG. 4B, and the sensor values of the sensors 202 to 204 are also included. It may be included in the sensor log of the radio wave sensor 201 (that is, the sensor log of the sensor whose level has changed includes not only the sensor value of the sensor but also the sensor values of other sensors).
  • the sensor value included in the sensor log may be the value acquired in S51, or the time when it is determined that the level has changed (S103 to S105, S203 to S205, S303 to S305, S403 to S405, S503 to S505).
  • the value may be newly acquired from each of the sensors 201 to 205.
  • the behavior estimation log is generated from the sensor log during the communication disabled period.
  • the behavior estimation log may be in the form described below.
  • the log request command is transmitted to the second control device 207, and the second control device 207 receives the log request command. Then, an action estimation log is generated from the sensor log during the communication disabled period, and these logs are transmitted to the first control device 108.
  • an action estimation log is generated from the sensor log during the communication disabled period, and these logs are transmitted to the first control device 108.
  • FIG. 17 is a flowchart showing a process flow of the first control device 108 according to the second embodiment.
  • the first control device 108 When the first control device 108 returns to the normal operation state from the abnormal state where the normal operation cannot be performed (hang-up) (S900), the first control device 108 transmits a log request command to the second control device 207 (S901).
  • the second control device 207 that has received the log request command creates a behavior estimation log from the sensor log when there is a sensor log that has been generated during the communication disabled period and has not been transmitted to the first control device 108.
  • the sensor log and the action designation log are transmitted to the first control device 108.
  • the first control apparatus 108 displays the sensor log and the action designation log as the first log. 2 Received from the control device 207 and stored in the first storage unit 107 (S903). After S901, the first control device 108 shifts the process to S904.
  • the first control device 108 skips S903 and shifts the processing to S904 when there is no sensor log that has not been transmitted to the first control device 108 (NO in S902).
  • FIG. 18 is a flowchart showing a process flow of the second control device 207 according to the second embodiment.
  • the second control device 207 When the power is turned on (S951), the second control device 207 first performs an initialization process (S952).
  • the initialization process in S952 has the same contents as S21 to S31 in FIG. Here, S32 to S35 are not performed.
  • the second control device 207 acquires sensor values from each of the radio wave sensor 201, the electrostatic sensor 202, the magnetic sensor 203, the acceleration sensor 204, and the temperature sensor 205 (S953). Subsequently, the second control device 207 transmits the sensor values of the sensors 201 to 205 acquired in S953 to the first control device 108 (S954).
  • the second control device 207 performs a sensor log generation process (S955) based on the sensor value acquired in S953.
  • the sensor log generation process in S955 is the same process as the sensor log generation process (S57) in FIG. That is, FIG. 14A and FIG. 14B are also a subroutine of the sensor log generation process of S955.
  • the second control device 207 determines whether a log request command has been received from the first control device 108 (S956). If a log request command has not been received from first control device 108 (NO in S956), second control device 207 proceeds to S953 and repeats the processing from S953 onward.
  • second control device 207 is a sensor log that has been recorded during the communication disabled period and has not been transmitted to first control device 108. Is determined (S957). Although not shown in FIG. 18, also in the present embodiment, the second control device 207 starts and ends the communication disabled period when a communication disabled period occurs with the first control device 108. , So that the communication disabled period can be recognized. Then, the second control device 207 determines whether there is a sensor log that has been recorded during the communication disabled period and has not been transmitted to the first control device 108.
  • the second control device 207 stores the sensor log recorded during the communication disabled period in the second storage unit 206. By simply searching, it is possible to determine whether there is a sensor log that has been recorded during the communication disabled period and has not been transmitted to the first control device 108. Further, even if the sensor log transmitted to the first control device 108 is continuously stored in the second storage unit 206, the second control device 207 can be provided by adding a flag indicating that the sensor log has already been transmitted to the transmitted sensor log. Can be determined whether there is a sensor log recorded during the communication disabled period and not transmitted to the first control device 108.
  • the second control device 207 is a sensor log recorded during the communication disabled period and there is no sensor log that has not been transmitted to the first control device 108 (NO in S957), the second control device 207 proceeds to S953, and the processing after S953 repeat.
  • second control device 207 performs action estimation log generation processing. (S958).
  • the action estimation log generation process of S958 is the same process as the action estimation log generation process (S62) of FIG. That is, FIG. 15 is also a subroutine of the action estimation log generation process of S958.
  • an action estimation log is generated from the sensor log during the communication disabled period, and the sensor log and the action estimation log are transmitted to the first control device 108.
  • the second control apparatus 207 shifts the process to S953 and repeats the processes after S953.
  • the watt-hour meter including the first control device that transmits and receives a signal to and from the display unit or the external communication port for outputting the power amount and measures the power amount.
  • the first control device transmits and receives signals to and from the display unit or the external communication port, but the second control device transmits and receives signals to and from the display unit or the external communication port. Since transmission / reception is not performed, the second control device is more resistant to radio wave emission or electrostatic discharge than at least the first control device. Therefore, even if radio wave emission or electrostatic discharge is performed on the watt hour meter and the first control device hangs up, the hang up to the second control device is suppressed. Therefore, since the second control device can generate the sensor log while the first control device is hung up due to fraud due to radio wave emission or electrostatic discharge, it is possible to leave a trace of fraud due to radio wave emission or electrostatic discharge. The first effect is that the fraud can be detected.
  • the sensor log is generated not only while the first control device is hung up but also during normal operation. It is not easy to identify the person unless it is a skilled meter reader (log analyst). This is because (1) the sensor log is simply a history of output information (output value level, etc.) indicating the height of the sensor output value. (2) Since the log of the period of the normal operation period and the hang-up period is enormous, the log that is suspected of fraud is identified from this enormous log. This is because it is difficult for a meter reader who is unfamiliar with analysis work. Therefore, according to the configuration of the present invention, when the first control device hangs up and a communication disabled period occurs with the first control device, the second control device generates the sensor log generated during the communication disabled period.
  • a behavior estimation log indicating the type of fraud estimated from the above is generated.
  • the meter reader need only analyze the behavior estimation log ignoring the sensor log when verifying the presence and type of fraud, and the behavior estimation log indicates the type of fraud.
  • the second effect is that even an inexperienced meter reader can easily perform the analysis work.
  • the communication impossibility period when the communication impossibility period occurs between the second control device and the first control device, the communication impossibility period ends and the second control device communicates with the first control device.
  • the behavior estimation log may be generated.
  • the first control device is configured to transmit a log request command to the second control device when returning from an abnormal state where normal operation cannot be performed to the normal operation state.
  • the second control apparatus may generate the behavior estimation log when receiving the log request command.
  • the plurality of sensors may include a magnetic sensor, an acceleration sensor, and a temperature sensor.
  • the second control device may generate a behavior estimation log indicating a series of fraudulent acts by the same fraudster from output values of different sensor pairs.
  • an action estimation log indicating an illegal act such as “radiation of radio waves after applying an impact” can be generated from the output value of the acceleration sensor and the output value of the radio wave sensor.
  • the types of possible cheating can be increased.
  • the detection device (security sensor 109) described above is accommodated in the watt-hour meter 100.
  • the present invention can be used for a watt-hour meter that measures the amount of power in a digital manner.
  • Electricity meter 104
  • Display unit 105
  • External communication unit external communication port
  • First control device 108
  • Security sensor detection device
  • Radio wave sensor 202
  • Electrostatic sensor 203
  • Magnetic sensor 204
  • Acceleration sensor 205
  • Temperature sensor 207 Second controller

Abstract

This power meter (100) is provided with a first control device (108), which carries out signal transmission and reception with a display unit (104) and an external communication unit (105), as well as a security sensor (109). A second control device (207) of the security sensor (109) carries out sensor log generation processing for generating a sensor log showing an output value level history for a plurality of sensors (201)-(205). When a period during which communication with the first control device (108) is impossible occurs, the second control device (207) carries out action estimation log generation processing for generating an action estimation log showing a type of fraudulent activity estimated from the sensor log generated in said period of communication impossibility.

Description

検出装置、電力量計Detector, watt-hour meter
 本発明は、電力量計に対する不正行為を検出するための検出装置に関する。 The present invention relates to a detection device for detecting fraudulent acts on a watt-hour meter.
 従来から、電力量計に不正行為を施すことによって盗電(電力を盗む)を行う不正者が存在する。これに対し、盗電を防止するための様々な技術が提案されている。例えば、特許文献1には、端子カバーを電力量計に固定するための封印ネジが緩められたことが検出されると、異常を通報する技術が開示されている。 Conventionally, there are fraudsters who steal power (steal power) by cheating on electricity meters. On the other hand, various techniques for preventing theft of electric power have been proposed. For example, Patent Document 1 discloses a technique for reporting an abnormality when it is detected that a sealing screw for fixing a terminal cover to a watt hour meter is loosened.
日本国公開特許公報「特開2002-257862号公報」Japanese Patent Publication “JP 2002-257862 A”
 特許文献1の技術では、電力量計のカバーの開操作を伴う不正行為(例えば不正バイパス配線の形成)を検出できるが、電力系のカバーの開操作を伴わない不正行為を検出することが困難である。 With the technology of Patent Document 1, it is possible to detect fraudulent actions (for example, formation of fraudulent bypass wiring) that involve an opening operation of a watt hour meter cover, but it is difficult to detect fraudulent actions that do not involve an opening operation of a power system cover It is.
 カバーの開操作を伴わない不正行為として、最近では、以下にて説明するスマートメータ(デジタル方式の電力量計)に対する不正行為が問題とされている。 As an illegal act not involving the opening operation of the cover, recently, an illegal act on a smart meter (digital watt hour meter) described below is a problem.
 スマートメータは、デジタル方式で電力量を計測して出力(表示または送信)する装置であり、表示部、外部通信部(赤外線通信用オプティカルポート)、プロセッサを備えている。スマートメータでは、プロセッサが、供給対象へ供給される電力量を電流センサ等に基づいて計測し、表示部を制御することによって当該電力量を表示(出力)するようになっており、外部通信部を制御して当該電力量を外部装置へ送信(出力)するようになっている。 A smart meter is a device that measures and outputs (displays or transmits) electric energy in a digital manner, and includes a display unit, an external communication unit (optical port for infrared communication), and a processor. In the smart meter, the processor measures the amount of power supplied to the supply target based on a current sensor or the like, and displays (outputs) the amount of power by controlling the display unit. And the amount of power is transmitted (output) to an external device.
 それゆえ、スマートメータにおいて、表示部および外部通信部を制御するプロセッサは、表示部または外部通信部との間で信号の送受信を行うようになっている。ここで、スマートメータにおいて、表示部および外部通信部は外部から視認可能にする必要があるため、表示部および外部通信部は電磁シールドで保護されていない。それゆえ、スマートメータのプロセッサ自体は、電磁シールドで保護されているものの、表面積が広く且つ電磁シールドで保護されていない表示部や外部通信部との間で信号の送受信を行う関係上、電波放出または静電気放電(ESD)に対する耐性が低い。 Therefore, in the smart meter, the processor that controls the display unit and the external communication unit transmits and receives signals to and from the display unit or the external communication unit. Here, in the smart meter, since the display unit and the external communication unit need to be visible from the outside, the display unit and the external communication unit are not protected by an electromagnetic shield. Therefore, although the smart meter processor itself is protected by an electromagnetic shield, it emits radio waves due to its large surface area and transmission / reception of signals to / from an external communication unit that is not protected by an electromagnetic shield. Or resistance to electrostatic discharge (ESD) is low.
 そこで、不正者は、一時的に電波放出または静電気放電を起こしてスマートメータのプロセッサをハングアップさせるという不正行為を行うことがある。つまり、スマートメータのプロセッサがハングアップされている間、電力供給が行われても電力量が計測されないため、盗電が可能になるのである。そして、短期間のみ電波放出または静電気放電によってプロセッサをハングアップさせる一方、その他の期間については電波放出および静電気放電を行わずにプロセッサを正常に作動させておけば、不正行為が行われた形跡が残りにくい。それゆえ、電波放出や静電気放電による不正行為が問題とされている。 Therefore, an unauthorized person may perform an illegal act of temporarily causing radio wave emission or electrostatic discharge to hang up the smart meter processor. In other words, while the smart meter processor is hung up, the amount of power is not measured even if power is supplied. If the processor is hung up only by a short period of time due to radio emission or electrostatic discharge, but the processor is operating normally without radio emission or electrostatic discharge during other periods, there will be evidence of fraudulent activity. Hard to remain. Therefore, fraudulent acts due to radio wave emission and electrostatic discharge are a problem.
 このような不正行為を検出するためには(不正行為が行われた形跡を記録するためには)、電波センサおよび静電気センサをスマートメータに取り付け、これらセンサの出力値(センサ値)に関するデータのログを保存しておくという手法が考えられる。このようなログは電波放出や静電気放電による不正行為が行われた形跡(証拠)になり得るからである。 In order to detect such fraud (in order to record evidence of fraud), a radio wave sensor and an electrostatic sensor are attached to the smart meter, and data on the output values (sensor values) of these sensors A method of saving logs can be considered. This is because such a log can be a sign (evidence) of fraudulent acts caused by radio wave emission or electrostatic discharge.
 しかし、ログの記録はプロセッサによって行う必要があるところ、電波放出や静電気放電によってスマートメータのプロセッサがハングアップしてしまうと、電力量計測が停止するだけでなく、ログの記録処理も停止してしまい、不正行為が行われている間のログの記録を残せず、結局、不正行為の検出が困難である。 However, the log must be recorded by the processor. If the smart meter processor hangs up due to radio wave emission or electrostatic discharge, not only the energy measurement stops, but also the log recording process stops. As a result, it is difficult to detect a log while the fraud is being performed, and it is difficult to detect the fraud.
 本発明は、電波放出や静電気放電による電流量計に対する不正行為を検出することの可能な検出装置、電力量計を提供することを目的とする。 An object of the present invention is to provide a detection device and a watt hour meter capable of detecting fraudulent acts on an ammeter due to radio wave emission or electrostatic discharge.
 以上の目的を達成するために、本発明は、電力量を出力するための表示部または外部通信ポートとの間で信号の送受信を行い、且つ前記電力量を計測する第1制御装置を備えた電力量計に収容されるものであり、前記電力量計に対する不正行為を検出するための検出装置であって、少なくとも電波センサおよび静電気センサを含む複数のセンサと、前記第1制御装置とは異なる回路基板であり前記第1制御装置との間で信号の送受信を行う第2制御装置とを備え、前記第2制御装置は、前記複数のセンサの各々について出力値の高さを示す出力情報の履歴を示したセンサログを生成するセンサログ生成処理と、前記第1制御装置との間で通信不可期間が生じた場合、当該通信不可期間に生成された前記センサログから推定される不正行為の種類を示した行動推定ログを生成する行動推定ログ生成処理とを実行することを特徴とする。 In order to achieve the above object, the present invention includes a first control device that transmits and receives a signal to and from a display unit for outputting electric energy or an external communication port and measures the electric energy. A detection device that is housed in a watt-hour meter and detects fraudulent acts on the watt-hour meter, and a plurality of sensors including at least a radio wave sensor and an electrostatic sensor are different from the first control device. A second control device that is a circuit board and transmits and receives signals to and from the first control device, wherein the second control device outputs output information indicating a height of an output value for each of the plurality of sensors. When a communication disabled period occurs between the sensor log generating process for generating a sensor log indicating a history and the first control device, an illegal action estimated from the sensor log generated during the communication disabled period And executes a behavior prediction log generation process for generating the activity estimation log showing the kind.
 本発明の構成によれば、第1制御装置は表示部または外部通信ポートとの間で信号の送受信を行うようになっているが、第2制御装置は表示部または外部通信ポートとの間で信号の送受信を行うようになっていないため、第2制御装置は、電波放出または静電気放電に対する耐性が少なくとも第1制御装置より高くなる。それゆえ、電力量計に対して電波放出または静電気放電が行われて第1制御装置がハングアップしても、第2制御装置までハングアップしてしまうことが抑制される。よって、電波放出または静電気放電による不正行為によって第1制御装置がハングアップしている間、第2制御装置が前記センサログを生成できるため、電波放出または静電気放電による不正行為の形跡を残すことができ、当該不正行為を検出することが可能になるという第1の効果を奏する。 According to the configuration of the present invention, the first control device transmits and receives signals to and from the display unit or the external communication port, while the second control device transmits and receives signals to and from the display unit or the external communication port. Since the signal transmission / reception is not performed, the second control device is more resistant to radio wave emission or electrostatic discharge than at least the first control device. Therefore, even if radio wave emission or electrostatic discharge is performed on the watt hour meter and the first control device hangs up, the hang up to the second control device is suppressed. Therefore, since the second control device can generate the sensor log while the first control device is hung up due to fraud due to radio wave emission or electrostatic discharge, it is possible to leave a trace of fraud due to radio wave emission or electrostatic discharge. The first effect is that the fraud can be detected.
 また、本発明の構成によれば、以下に示す第2の効果も奏する。前記センサログは、第1制御装置がハングアップされている間だけでなく正常に動作している間も生成されることになるが、正常動作期間およびハングアップ期間を合わせた期間のセンサログから不正行為を特定することは熟練した検針員(ログ分析者)でない限り容易ではない。これは、(1)センサログは単なるセンサ出力値の高さを示す出力情報(出力値のレベル等)の履歴でしかないため、ログの分析に不慣れな検針員ではセンサログから不正行為の種類までを特定することが困難であり、(2)正常動作期間およびハングアップ期間を合わせた期間のログは膨大であることから、この膨大なログのなかから不正行為の疑いのあるログを特定するのは分析作業に不慣れな検針員では困難だからである。そこで、本発明の構成によれば、第2制御装置は、第1制御装置がハングアップして第1制御装置との間で通信不可期間が生じると、当該通信不可期間に生成された前記センサログから推定される不正行為の種類を示した行動推定ログを生成するようになっている。これにより、検針員は、不正行為の有無および種類を検証するにあたって、センサログを無視して行動推定ログのみを分析すればよく、さらには、行動推定ログに不正行為の種類が示されているため、分析作業に不慣れな検針員でも分析作業が容易という第2の効果を奏する。 Further, according to the configuration of the present invention, the following second effect is also achieved. The sensor log is generated not only while the first control device is hung up but also during normal operation. It is not easy to identify the person unless it is a skilled meter reader (log analyst). This is because (1) the sensor log is simply a history of output information (output value level, etc.) that indicates the height of the sensor output value. It is difficult to identify, and (2) the log of the period that combines the normal operation period and the hang-up period is enormous. This is because it is difficult for a meter reader who is unfamiliar with the analysis work. Therefore, according to the configuration of the present invention, when the first control device hangs up and a communication disabled period occurs with the first control device, the second control device generates the sensor log generated during the communication disabled period. A behavior estimation log indicating the type of fraud estimated from the above is generated. As a result, the meter reader need only analyze the behavior estimation log ignoring the sensor log when verifying the presence and type of fraud, and the behavior estimation log indicates the type of fraud. The second effect is that even an inexperienced meter reader can easily perform the analysis work.
本発明の一実施形態に係る電力量計の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the watt-hour meter which concerns on one Embodiment of this invention. 図1に示すセキュリティセンサの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the security sensor shown in FIG. 図1に示すセキュリティセンサの外観を示す図である。It is a figure which shows the external appearance of the security sensor shown in FIG. 電波センサのセンサ値に適用される閾値とレベルとの関係を示したグラフと、電波センサのセンサログの一例とを示した図である。It is the figure which showed the relationship between the threshold value applied to the sensor value of a radio wave sensor, and a level, and the figure which showed an example of the sensor log of a radio wave sensor. 第1制御装置にて計測される電力量と、第1制御装置の動作状態と、第1制御装置と第2制御装置との間の通信の状態と、第1記憶部に記憶されるログとの関係を示した説明図である。The amount of electric power measured by the first control device, the operating state of the first control device, the state of communication between the first control device and the second control device, and the log stored in the first storage unit It is explanatory drawing which showed this relationship. 行動推定ログの一例を示した模式図である。It is the schematic diagram which showed an example of the action estimation log. 通信不可期間中に記録されたセンサログを示す図である。It is a figure which shows the sensor log recorded during the communication impossibility period. 図7に示すセンサログから図6に示す行動推定ログが生成される過程を示した説明図である。It is explanatory drawing which showed the process in which the action estimation log shown in FIG. 6 is produced | generated from the sensor log shown in FIG. 行動推定ログ生成処理にて使用される補正テーブルを示した模式図である。It is the schematic diagram which showed the correction table used in an action estimation log production | generation process. 行動推定ログ生成処理にて使用される第1~第4の行動推定テーブルを示した模式図である。FIG. 6 is a schematic diagram showing first to fourth behavior estimation tables used in behavior estimation log generation processing. セキュリティセンサの第2制御装置の処理全体の流れを示すフローチャートである。It is a flowchart which shows the flow of the whole process of the 2nd control apparatus of a security sensor. 図11のS2の初期化処理のサブルーチンのフローチャートである。It is a flowchart of the subroutine of the initialization process of S2 of FIG. 図11のS3のセンサ処理のサブルーチンのフローチャートである。It is a flowchart of the subroutine of the sensor process of S3 of FIG. 図13のS57のセンサログ生成処理のサブルーチンを示すフローチャートのうち、前半部分を示したものである。FIG. 14 shows the first half of a flowchart showing a subroutine of the sensor log generation process in S57 of FIG. 図13のS57のセンサログ生成処理のサブルーチンを示すフローチャートのうち、後半部分を示したものである。The latter half part is shown among the flowcharts which show the subroutine of the sensor log production | generation process of S57 of FIG. 図13のS62の行動推定ログ生成処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the action estimation log production | generation process of S62 of FIG. 第1制御装置の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a 1st control apparatus. 実施の形態2に係る第1制御装置の処理の流れを示すフローチャートである。6 is a flowchart showing a process flow of a first control device according to a second embodiment. 実施の形態2に係る第2制御装置の処理の流れを示すフローチャートである。6 is a flowchart showing a process flow of a second control device according to the second embodiment.
 [実施の形態1]
 本発明の一実施形態を図に基づいて説明する。図1は、本発明の一実施形態に係る電力量計の概略構成を示すブロック図である。
[Embodiment 1]
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of a watt-hour meter according to an embodiment of the present invention.
  (電力量計の全体構成)
 電力量計100は、図1に示すように、三相交流方式の送電線P1~P3を介して電力供給対象(例えば家屋)へ供給される電力の電力量をデジタル方式によって計測するスマートメータである。
(Whole configuration of electricity meter)
As shown in FIG. 1, the watt-hour meter 100 is a smart meter that measures the amount of power supplied to a power supply target (for example, a house) via a three-phase AC transmission line P1 to P3 by a digital method. is there.
 電力量計100は、同図に示されるように、電流センサCT1・CT3と、分圧回路102と、電源回路103と、表示部104と、外部通信部105と、RTC106と、第1記憶部107と、第1制御装置108と、セキュリティセンサ109とを備えている。 As shown in the figure, the watt-hour meter 100 includes current sensors CT1 and CT3, a voltage dividing circuit 102, a power supply circuit 103, a display unit 104, an external communication unit 105, an RTC 106, and a first storage unit. 107, a first control device 108, and a security sensor 109.
 電流センサCT1は、送電線P1の電流値IP1を検出するセンサであり、電流センサCT3は、送電線P3の電流値IP3を検出するセンサである。分圧回路102は、送電線P1の電圧値VP1と、送電線のP3の電圧値VP3とを検出するセンサである。電源回路103は、電力量計100が備える各ハードウェアに対して電力を供給する電源である。 The current sensor CT1 is a sensor that detects the current value IP1 of the power transmission line P1, and the current sensor CT3 is a sensor that detects the current value IP3 of the power transmission line P3. The voltage dividing circuit 102 is a sensor that detects a voltage value VP1 of the transmission line P1 and a voltage value VP3 of P3 of the transmission line. The power supply circuit 103 is a power supply that supplies power to each hardware included in the watt-hour meter 100.
 表示部104は、第1制御装置108と電気的に直接接続されており、第1制御装置108に制御されることによって電力量を表示出力する表示装置である。表示部104としては例えば液晶表示装置が用いられる。なお、表示部104は、電力量計100の外部から視認可能なように電力量計100に取り付けられている。これは、表示部104に表示される内容を検針員等に視認させるためである。 The display unit 104 is a display device that is electrically connected directly to the first control device 108 and that displays and outputs the amount of power under the control of the first control device 108. As the display unit 104, for example, a liquid crystal display device is used. The display unit 104 is attached to the watt hour meter 100 so as to be visible from the outside of the watt hour meter 100. This is because the meter reader or the like visually recognizes the content displayed on the display unit 104.
 外部通信部(外部通信ポート)105は、第1制御装置108と電気的に直接接続されており、第1制御装置108に制御されることによって赤外線通信を行う受発光素子(オプティカルポート)である。なお、外部通信部105は、外部から視認可能なように電力量計100に取り付けられている。これは、検針員の有する赤外線通信装置を外部通信部105に対向配置させ、当該赤外線通信装置と電力量計100との間で赤外線通信を行うことを可能とするためである。 The external communication unit (external communication port) 105 is a light receiving / emitting element (optical port) that is electrically connected directly to the first control device 108 and performs infrared communication by being controlled by the first control device 108. . The external communication unit 105 is attached to the watt-hour meter 100 so as to be visible from the outside. This is because the infrared communication device possessed by the meter reader is arranged opposite to the external communication unit 105 so that infrared communication can be performed between the infrared communication device and the watt-hour meter 100.
 第1記憶部107は、情報の保存を行う記憶領域であり、本実施形態ではEEPROM(登録商標;Electrically Erasable Programmable Read-Only Memory)が用いられる。なお、第1記憶部107に対する情報の読み書きは、第1制御装置108によって実行される。 The first storage unit 107 is a storage area for storing information. In this embodiment, an EEPROM (registered trademark; Electrically Erasable Programmable Read-Only Memory) is used. In addition, reading / writing of the information with respect to the 1st memory | storage part 107 is performed by the 1st control apparatus 108. FIG.
 第1制御装置108は、電力量計100の各ハードウェアを制御する制御回路基板であり、具体的にはプログラムによって処理を実行するプロセッサ(例えばCPU(Central Processing Unit))が用いられる。 The first control device 108 is a control circuit board that controls each hardware of the watt-hour meter 100. Specifically, a processor (for example, a CPU (Central Processing Unit)) that executes processing according to a program is used.
 第1制御装置108は、図1に示すように、電力演算部111、表示制御部112、外部通信処理部114、第1ログ処理部113を備えている。なお、第1制御装置108はハードウェアであるが、第1制御装置108に含まれる各ブロック111~114は、第1制御装置108が実行するソフトウェアの機能を示す機能ブロックである。 As shown in FIG. 1, the first control device 108 includes a power calculation unit 111, a display control unit 112, an external communication processing unit 114, and a first log processing unit 113. The first control device 108 is hardware, but the blocks 111 to 114 included in the first control device 108 are functional blocks that indicate software functions executed by the first control device 108.
 電力演算部111は、電流センサCT1、CT3、および分圧回路102の検出値を用いて、送電線P1~P3を介して電力供給対象へ供給される電力の電力量を演算(計測)する処理を行うブロックである。 The power calculation unit 111 uses the detection values of the current sensors CT1 and CT3 and the voltage dividing circuit 102 to calculate (measure) the amount of power supplied to the power supply target via the transmission lines P1 to P3. It is a block that performs.
 具体的には、電力演算部111は、電流値IP1と電圧値VP1とを乗じて送電線P1の瞬時電力量を求め、電流値IP3と電圧値VP3とを乗じて送電線P3の瞬時電力値を求め、送電線P1の瞬時電力値と送電線P3の瞬時電力値との和を時間積分することによって電力量を求めるようになっている。 Specifically, the power calculation unit 111 obtains the instantaneous power amount of the transmission line P1 by multiplying the current value IP1 and the voltage value VP1, and multiplies the current value IP3 and the voltage value VP3 to obtain the instantaneous power value of the transmission line P3. The amount of power is obtained by time-integrating the sum of the instantaneous power value of the transmission line P1 and the instantaneous power value of the transmission line P3.
 電力演算部111は、所定期間(例えば10分)が経過する度に、当該所定期間における電力量を算出し、当該所定期間における電力量を第1記憶部107に保存すると共に表示制御部112に伝達する。 The power calculation unit 111 calculates the amount of power in the predetermined period every time a predetermined period (for example, 10 minutes) elapses, stores the amount of power in the predetermined period in the first storage unit 107, and stores it in the display control unit 112. introduce.
 また、電力演算部111は、所定期間毎の電力量を積算することにより、月毎や日毎の電力量(或いは通算の電力量でもよい)を求め、当該電力量を第1記憶部107に記憶させる。 In addition, the power calculation unit 111 obtains a monthly or daily power amount (or a total power amount) by integrating the power amount for each predetermined period, and stores the power amount in the first storage unit 107. Let
 表示制御部112は、表示部104を制御するブロックである。表示制御部112は、電力演算部111から伝達されてくる所定期間の電力量を表示部104に表示させる。なお、表示制御部112は、外部から入力されるコマンド(オペレータのコマンド)に応じて、第1記憶部107に保存されている日毎の電力量や月毎の電力量を表示部104に表示させるようになっていてもよい。 The display control unit 112 is a block that controls the display unit 104. The display control unit 112 causes the display unit 104 to display the amount of power transmitted from the power calculation unit 111 for a predetermined period. The display control unit 112 displays the daily power amount and the monthly power amount stored in the first storage unit 107 on the display unit 104 in accordance with a command (operator command) input from the outside. It may be like this.
 第1ログ処理部(不正制御部)113は、後述するセキュリティセンサ109から送られてくるデータ(センサ値)を参照して、センサ値(出力値)のレベルの履歴を示すセンサログ(異常検知ログ)を生成して第1記憶部107に記録する処理を行う。センサログ(図4の(b)参照)を生成する処理については後述する。 The first log processing unit (unauthorized control unit) 113 refers to data (sensor value) sent from the security sensor 109 described later, and a sensor log (abnormality detection log) indicating a history of sensor value (output value) level ) Is generated and recorded in the first storage unit 107. Processing for generating a sensor log (see FIG. 4B) will be described later.
 外部通信処理部114は、外部通信部105を制御するブロックである。電力量計100の検針員が、赤外線通信装置を外部通信部105に近接且つ対向配置させ、当該赤外線通信装置を操作して外部通信部105にデータ抽出コマンドを赤外線送信すると、外部通信処理部114は、外部通信部105を介して、データ抽出コマンドを受信する。外部通信処理部114は、データ抽出コマンドを受信すると、第1記憶部107に記憶されているデータを読み出し、外部通信部105を介して当該データを赤外線通信装置に赤外線送信するようになっている。なお、外部通信処理部114によって赤外線通信装置に送信されるデータは、電力量に関するデータ、センサログ(図4の(b)参照)、および、行動推定ログ(図6参照)である。これにより、検針員は、電力量計100に保存されている電力量に関するデータおよびログ(センサログ、行動推定ログ)を定期的に抽出できる。なお、センサログおよび行動推定ログについては後で説明する。 The external communication processing unit 114 is a block that controls the external communication unit 105. When the meter reader of the watt-hour meter 100 places the infrared communication device close to and opposite to the external communication unit 105 and operates the infrared communication device to transmit the data extraction command to the external communication unit 105 by infrared, the external communication processing unit 114. Receives the data extraction command via the external communication unit 105. When receiving the data extraction command, the external communication processing unit 114 reads the data stored in the first storage unit 107 and transmits the data to the infrared communication device via the external communication unit 105 by infrared. . The data transmitted to the infrared communication device by the external communication processing unit 114 is data related to the amount of power, a sensor log (see FIG. 4B), and an action estimation log (see FIG. 6). As a result, the meter reader can periodically extract data and logs (sensor log, action estimation log) regarding the electric energy stored in the watt-hour meter 100. The sensor log and behavior estimation log will be described later.
 RTC106は、年月日および時分秒を含めた現在時刻を示す時刻情報を出力するリアルタイムクロックである。なお、RTC106は、バックアップ電池(不図示)が接続されているため、停電等によって停止せず、常に正確な時刻情報を出力する。第1制御装置108は、RTC106の時刻情報に基づいて現在時刻を認識するようになっている。また、後述するセキュリティセンサ109の第2制御装置207(図2参照)は、セキュリティセンサ109の起動時に、RTC106の時刻情報を第1制御装置108から取得し、取得した現在時刻を不図示のタイマに設定し、このタイマに基づいて現在時刻を認識するようになっている。 The RTC 106 is a real-time clock that outputs time information indicating the current time including the date and time and the hour, minute, and second. Note that the RTC 106 is always connected with a backup battery (not shown), and therefore does not stop due to a power failure or the like, and always outputs accurate time information. The first controller 108 recognizes the current time based on the time information of the RTC 106. A second control device 207 (see FIG. 2) of the security sensor 109, which will be described later, acquires time information of the RTC 106 from the first control device 108 when the security sensor 109 is activated, and the acquired current time is a timer (not shown). The current time is recognized based on this timer.
  (セキュリティセンサ109の構成)
 つぎに、セキュリティセンサ109について説明する。図2は、図1に示されるセキュリティセンサ109が備える各ハードウェアを示すブロック図である。図3は、セキュリティセンサ109の外観図である。
(Configuration of security sensor 109)
Next, the security sensor 109 will be described. FIG. 2 is a block diagram showing hardware included in the security sensor 109 shown in FIG. FIG. 3 is an external view of the security sensor 109.
 図3の(a)は、セキュリティセンサ109の正面を示す斜視図である。図3の(b)は、セキュリティセンサ109の裏面を示す斜視図である。図3の(c)は、セキュリティセンサ109の上面図である。図3の(d)は、セキュリティセンサ109の正面図である。図3の(e)は、セキュリティセンサ109の側面図である。図3の(f)は、セキュリティセンサ109の裏面図である。図3の(g)は、セキュリティセンサ109の下面図である。 3 (a) is a perspective view showing the front of the security sensor 109. FIG. FIG. 3B is a perspective view showing the back surface of the security sensor 109. FIG. 3C is a top view of the security sensor 109. FIG. 3D is a front view of the security sensor 109. FIG. 3E is a side view of the security sensor 109. FIG. 3F is a rear view of the security sensor 109. FIG. 3G is a bottom view of the security sensor 109.
 セキュリティセンサ109は、電力量計100に対する不正行為を検出するための検出装置であり、電力量計100の内部に取り付けられる。なお、セキュリティセンサ109は、電力量計100に対して着脱可能である。 The security sensor 109 is a detection device for detecting an illegal act on the watt hour meter 100 and is attached to the inside of the watt hour meter 100. The security sensor 109 is detachable from the watt hour meter 100.
 セキュリティセンサ109は、図2に示すように、電波センサ201、静電気センサ202、磁気センサ203、加速度センサ204、温度センサ205、第2記憶部206、および、第2制御装置207を備えている。なお、セキュリティセンサ109は、図3(a)に示す樹脂製のパッケージ(筐体)109aを有し、パッケージ109aが図2に示される各部材201~207を収容している。 As shown in FIG. 2, the security sensor 109 includes a radio wave sensor 201, an electrostatic sensor 202, a magnetic sensor 203, an acceleration sensor 204, a temperature sensor 205, a second storage unit 206, and a second control device 207. The security sensor 109 has a resin package (housing) 109a shown in FIG. 3A, and the package 109a accommodates the members 201 to 207 shown in FIG.
 電波センサ201は、電子機器に対する電波障害(EMI)の要因となる周波数帯域の電波の量に相関するセンサ値AD1を出力するセンサである。具体的には、電力量を計測するプロセッサ(本実施形態では第1制御装置108)をハングアップさせるために電波放出する不正行為が行われると、電波センサ201から出力されるセンサ値AD1が高くなる。 The radio wave sensor 201 is a sensor that outputs a sensor value AD1 that correlates with the amount of radio waves in a frequency band that causes radio interference (EMI) with respect to an electronic device. Specifically, when an illegal act of emitting radio waves is performed in order to hang up the processor that measures the amount of power (the first control device 108 in this embodiment), the sensor value AD1 output from the radio wave sensor 201 becomes high. Become.
 静電気センサ(ESD Surge sensor)202は、電力量計100において電荷のサージ現象が生じた場合の電荷の増加量に相当するセンサ値AD2を出力するセンサである。具体的には、電力量を計測するプロセッサ(本実施形態では第1制御装置108)をハングアップさせるために静電気放出する不正行為が行われると、電力量計100にて電荷のサージ現象が生じ、センサ値AD2が高くなる。 The electrostatic sensor (ESD Surge sensor) 202 is a sensor that outputs a sensor value AD2 corresponding to an increase in charge when a charge surge phenomenon occurs in the watt-hour meter 100. Specifically, a charge surge phenomenon occurs in the watt-hour meter 100 when a fraudulent act of discharging static electricity is performed to hang up the processor (first control device 108 in this embodiment) that measures the amount of power. The sensor value AD2 becomes high.
 磁気センサ203は、磁場の大きさに相関するセンサ値AD3を出力するセンサである。具体的には、電流センサCT1・CT3の機能停止を目的として電力量計100に磁石を近づける不正行為が行われると、磁気センサ203から出力されるセンサ値AD3は高くなる。なお、電流センサCT1・CT3が機能停止すると、電力演算部111は電力量を計測できず、盗電が生じることになる。 The magnetic sensor 203 is a sensor that outputs a sensor value AD3 correlated with the magnitude of the magnetic field. Specifically, when an illegal act of bringing the magnet close to the watt hour meter 100 is performed for the purpose of stopping the functions of the current sensors CT1 and CT3, the sensor value AD3 output from the magnetic sensor 203 increases. Note that if the current sensors CT1 and CT3 stop functioning, the power calculation unit 111 cannot measure the amount of power, resulting in theft.
 加速度センサ204は、セキュリティセンサ109の加速度に相関するセンサ値AD4を出力するセンサである。具体的には、電力量計100のカバーの破壊を目的として電力量計100に対してドリル等によって衝撃を付与するという不正行為が行われると、加速度センサ204から出力されるセンサ値AD4が高くなる。 The acceleration sensor 204 is a sensor that outputs a sensor value AD4 that correlates with the acceleration of the security sensor 109. Specifically, when an illegal act of applying an impact to the watt-hour meter 100 with a drill or the like for the purpose of breaking the cover of the watt-hour meter 100, the sensor value AD4 output from the acceleration sensor 204 becomes high. Become.
 温度センサ205は、雰囲気温度に相関するセンサ値AD5を出力するセンサである。具体的には、電力量計100のカバーの破壊を目的として電力量計100のカバーに対して火が放たれると、温度センサ205から出力されるセンサ値AD5が高くなる。 The temperature sensor 205 is a sensor that outputs a sensor value AD5 correlated with the ambient temperature. Specifically, when the cover of the watt hour meter 100 is ignited for the purpose of breaking the cover of the watt hour meter 100, the sensor value AD5 output from the temperature sensor 205 increases.
 第2記憶部206は、情報の保存を行う記憶領域であり、本実施形態ではフラッシュメモリが用いられる。第2記憶部206に対する情報の読み書きは、第2制御装置207によって実行される。 The second storage unit 206 is a storage area for storing information, and a flash memory is used in this embodiment. Reading and writing of information with respect to the second storage unit 206 is executed by the second control device 207.
 第2制御装置207は、第1制御装置108とは別体の制御回路基板であり、セキュリティセンサ109の各ハードウェアを制御するプロセッサ(例えばCPU)である。 The second control device 207 is a control circuit board separate from the first control device 108, and is a processor (for example, CPU) that controls each hardware of the security sensor 109.
 第2制御装置207は、各センサ201~205のセンサ値を受信し、当該センサ値を参照して、センサ値のレベルの履歴を示したセンサログ(異常検知ログ)を生成して第2記憶部206に保存する。また、第2制御装置207は、各センサ201~205から受信したセンサ値を第1制御装置108へ送信(転送)するようになっている。 The second control device 207 receives the sensor values of the sensors 201 to 205, refers to the sensor values, generates a sensor log (abnormality detection log) indicating the history of the sensor value level, and generates a second storage unit. Save to 206. The second control device 207 transmits (transfers) the sensor values received from the sensors 201 to 205 to the first control device 108.
 なお、前述したが、第1制御装置108の側では、第1ログ処理部113が、セキュリティセンサ109(つまり第2制御装置207)から送られてくるセンサ値を受信し、当該センサ値に基づいてセンサログを生成して第1記憶部107に保存する。 As described above, on the first control device 108 side, the first log processing unit 113 receives the sensor value sent from the security sensor 109 (that is, the second control device 207), and based on the sensor value. The sensor log is generated and stored in the first storage unit 107.
 ここで、第2制御装置207におけるセンサログ(図4の(b)参照)の生成処理の処理内容と、第1制御装置108におけるセンサログの生成処理の処理内容とは同じである。それゆえ、第1制御装置108および第2制御装置207がいずれも正常に動作している間、第1制御装置108および第2制御装置207は、互いに同じ内容のセンサログの生成処理を行い、互いに同じ内容のセンサログを生成することになる。それゆえ、第1制御装置108および第2制御装置207がいずれも正常に動作している間の第1記憶部107に保存されるセンサログと第2記憶部206に記憶されるセンサログとは同じ内容である。 Here, the processing content of the sensor log generation processing in the second control device 207 and the processing content of the sensor log generation processing in the first control device 108 are the same. Therefore, while both the first control device 108 and the second control device 207 are operating normally, the first control device 108 and the second control device 207 perform the process of generating sensor logs having the same contents as each other. A sensor log with the same content is generated. Therefore, the sensor log stored in the first storage unit 107 and the sensor log stored in the second storage unit 206 during the normal operation of both the first control device 108 and the second control device 207 are the same. It is.
  (電波放出または静電気放電に対する耐性について)
 つぎに、第1制御装置108および第2制御装置207の電波放出または静電気放電に対する耐性について説明する。
(Resistance to radio wave emission or electrostatic discharge)
Next, the resistance to radio wave emission or electrostatic discharge of the first control device 108 and the second control device 207 will be described.
 一般的に、電力量計においては、外部からオペレータが表示部および外部通信部(オプティカルポート)を視認可能になるように設計しなければならない関係上、表示部および外部通信部は電磁シールドに保護されていない。そして、表示部および外部通信部は、表面積が広いハードウェアであるため、電力量計に対して電波放出または静電気放電が行われた場合、当該表示部または外部通信部と信号の送受信を行う制御回路(プロセッサ)には、表示部または外部通信部との間の配線を介して電波または静電気が容易に伝わってしまう。それゆえ、表示部または外部通信部と信号の送受信を行う制御回路は、ハングアップが生じやすく、電波または静電気に対する耐性が低い。 In general, watt hour meters must be designed so that the operator can visually recognize the display unit and external communication unit (optical port) from the outside. It has not been. Since the display unit and the external communication unit are hardware with a large surface area, when radio wave emission or electrostatic discharge is performed on the watt hour meter, control is performed to transmit / receive signals to / from the display unit or external communication unit. Radio waves or static electricity is easily transmitted to the circuit (processor) via the wiring between the display unit and the external communication unit. Therefore, a control circuit that transmits and receives signals to and from the display unit or the external communication unit is likely to hang up and has low resistance to radio waves or static electricity.
 すなわち、本実施形態においても、電力量計100の表示部104または外部通信部105と信号の送受信を行う第1制御装置108は、電波放出または静電気放電に対する耐性が低く、電力量計100に対して電波放出または静電気放電が行われると、ハングアップが生じやすい。 That is, also in this embodiment, the first control device 108 that transmits and receives signals to and from the display unit 104 or the external communication unit 105 of the watt hour meter 100 has low resistance to radio wave emission or electrostatic discharge, and If radio waves are emitted or electrostatic discharge is performed, hang-up is likely to occur.
 これに対し、本実施形態の第2制御装置207は、表示部および外部通信部との間で信号の送受信を行わず、第1制御装置108、第2記憶部206、各センサ201~205との間で信号の送受信を行うように設計されている。それゆえ、第2制御装置207は、電波放出または静電気放電に対する耐性が高く(少なくとも第1制御装置108よりは高い)、電力量計100に対して電波放出または静電気放電が行われても、ハングアップが生じ難い。その理由は以下の通りである。 In contrast, the second control device 207 of the present embodiment does not transmit / receive signals to / from the display unit and the external communication unit, and the first control device 108, the second storage unit 206, and the sensors 201 to 205 It is designed to send and receive signals between. Therefore, the second control device 207 is highly resistant to radio wave emission or electrostatic discharge (at least higher than the first control device 108) and hangs even if radio wave emission or electrostatic discharge is performed on the watt-hour meter 100. It is hard for an up. The reason is as follows.
 一般的に、制御装置や記憶装置等の回路基板同士を繋ぐ配線は、電波および静電気の伝達が抑制されるように設計されているため、電磁シールドによる保護の無い表示部または外部通信部と回路基板とを繋ぐ配線よりも電波および静電気の影響が抑えられる。それゆえ、電力量計100に対して電波放出や静電気放電が行われても、表示部104または外部通信部105から第1制御装置108までは電波または静電気が容易に伝わってしまうが、第1制御装置108から第2制御装置207へは伝わり難い。また、第2制御装置207は、センサ201~205と信号の送受信を行うようになっているが、センサ201~205は、表示部104または外部通信部105と比べ、極めてサイズが小さく、表面積も極めて小さい。それゆえ、電力量計100に対して電波放出や静電気放電が行われても、表面積の大きい表示部104または外部通信部105から第1制御装置108へは電波または静電気が容易に伝わってしまうが、表面積の小さい各センサ201~205から第2制御装置207へは電波または静電気は伝わり難い。それゆえ、第2制御装置207は、電波放出または静電気放電に対する耐性が高く(少なくとも第1制御装置108よりは高い)、電力量計100に対して電波放出または静電気放電が行われても、ハングアップが生じ難いのである。 Generally, the wiring that connects circuit boards such as control devices and storage devices is designed to suppress the transmission of radio waves and static electricity, so the display unit or external communication unit and circuit that are not protected by electromagnetic shielding The influence of radio waves and static electricity is suppressed compared to the wiring connecting the substrate. Therefore, even if radio wave emission or electrostatic discharge is performed on the watt-hour meter 100, radio wave or static electricity is easily transmitted from the display unit 104 or the external communication unit 105 to the first control device 108. It is difficult to transmit from the control device 108 to the second control device 207. The second control device 207 transmits and receives signals to and from the sensors 201 to 205. However, the sensors 201 to 205 are extremely small in size and surface area compared to the display unit 104 or the external communication unit 105. Very small. Therefore, even if radio wave emission or electrostatic discharge is performed on the watt-hour meter 100, radio wave or static electricity is easily transmitted from the display unit 104 or the external communication unit 105 having a large surface area to the first control device 108. In addition, it is difficult for radio waves or static electricity to be transmitted from the sensors 201 to 205 having a small surface area to the second controller 207. Therefore, the second control device 207 is highly resistant to radio wave emission or electrostatic discharge (at least higher than the first control device 108) and hangs even if radio wave emission or electrostatic discharge is performed on the watt-hour meter 100. It is hard for an increase to occur.
 つまり、電力量計100に対して電波放出または静電気放電が行われて第1制御装置108がハングアップしている期間が生じても、第2制御装置207は正常動作を続けることができる。この期間において、第1制御装置108は、第2制御装置207からセンサ値を受信できないため、センサログを生成できないが、第2制御装置207は、センサログを生成できる。 That is, even if there is a period in which radio wave emission or electrostatic discharge is performed on the watt hour meter 100 and the first control device 108 is hung up, the second control device 207 can continue normal operation. During this period, the first control device 108 cannot generate the sensor log because it cannot receive the sensor value from the second control device 207, but the second control device 207 can generate the sensor log.
  (第2制御装置207の詳細について)
 つぎに、第2制御装置207の詳細について説明する。図2に示すように、第2制御装置207は、センサ値取得部301、通信制御部302、第2ログ処理部303を備えている。なお、第2制御装置207はハードウェア(CPU)であるが、第2制御装置207に含まれる各ブロック301~303は、第2制御装置207が実行するソフトウェアの機能を示す機能ブロックである。
(Details of the second control device 207)
Next, details of the second control device 207 will be described. As illustrated in FIG. 2, the second control device 207 includes a sensor value acquisition unit 301, a communication control unit 302, and a second log processing unit 303. The second control device 207 is hardware (CPU), but each of the blocks 301 to 303 included in the second control device 207 is a functional block indicating a function of software executed by the second control device 207.
 センサ値取得部301は、各センサ201~205の各々を制御するとともに、一定期間毎に、各センサ201~205のセンサ値を同時に取得するブロックである。 The sensor value acquisition unit 301 is a block that controls each of the sensors 201 to 205 and simultaneously acquires the sensor values of the sensors 201 to 205 at regular intervals.
 通信制御部302は、第1制御装置108との間で通信を行うブロックである。具体的には、通信制御部302は、センサ値取得部301が取得した各センサ201~205のセンサ値を第1制御装置108へ送信(転送)するようになっている。 The communication control unit 302 is a block that performs communication with the first control device 108. Specifically, the communication control unit 302 transmits (transfers) the sensor values of the sensors 201 to 205 acquired by the sensor value acquisition unit 301 to the first control device 108.
 また、通信制御部302は、第1制御装置108の通信状態を監視するようにもなっている。具体的には、通信制御部302は、第1制御装置108との間で通信不可期間が生じた場合、通信不可期間の開始時と終了時とを検出(判定)するようになっている。なお、前記通信不可期間としては、例えば、電力量計100に対して電波放出または静電気放電が行われて第1制御装置108がハングアップしていることにより、第1制御装置108と第2制御装置207との間で通信不可になる期間が挙げられる。 In addition, the communication control unit 302 is configured to monitor the communication state of the first control device 108. Specifically, the communication control unit 302 detects (determines) the start time and the end time of the communication disabled period when a communication disabled period occurs with the first control device 108. Note that the communication disabled period is, for example, that the first control device 108 and the second control are performed when radio waves are emitted or electrostatic discharge is performed on the watt hour meter 100 and the first control device 108 is hung up. Examples include a period during which communication with the device 207 is disabled.
 第2ログ処理部303は、センサ値取得部301が取得した各センサ201~205のセンサ値を参照して、各センサ201~205毎にセンサログ(図4の(b)参照)を生成するセンサログ生成処理を行う。 The second log processing unit 303 refers to the sensor values of the sensors 201 to 205 acquired by the sensor value acquisition unit 301, and generates a sensor log (see FIG. 4B) for each of the sensors 201 to 205. Perform the generation process.
 また、第2ログ処理部303は、第1制御装置108との間で通信不可期間が生じた場合、第1制御装置108との間で通信可能状態に復帰した後、通信不可期間におけるセンサログから行動推定ログを生成する行動推定ログ生成処理を行うようになっている。なお、第2ログ処理部303によって生成された行動推定ログは、通信制御部302によって第1制御装置108へ送信される。 In addition, when a communication impossible period with the first control device 108 occurs, the second log processing unit 303 returns to a state in which communication with the first control device 108 is possible, and then from the sensor log in the communication disabled period. Action estimation log generation processing for generating an action estimation log is performed. Note that the behavior estimation log generated by the second log processing unit 303 is transmitted to the first control device 108 by the communication control unit 302.
 以下、センサログ生成処理について説明し、その後に行動推定ログ生成処理について説明する。 Hereinafter, the sensor log generation process will be described, and then the behavior estimation log generation process will be described.
  (センサログ生成処理について)
 本実施形態では、各センサ201~205毎に、閾値1、および、閾値1よりも高値の閾値2の2つの閾値が設定される。また、各センサ201~205毎に、センサ値のレベルとしてレベル0が初期設定されている。
(About sensor log generation processing)
In the present embodiment, two threshold values, threshold value 1 and threshold value 2 higher than threshold value 1, are set for each sensor 201-205. Further, level 0 is initially set as the sensor value level for each of the sensors 201 to 205.
 第2ログ処理部303は、各センサ201~205毎に、取得されたセンサ値のレベルの変化が生じたか否かを判定する。第2ログ処理部303は、レベルの変化が生じたと判定する場合、記録時刻とレベル情報との対応関係を示したセンサログを記録するようになっている。記録時刻は、当該記録時刻が示されるセンサログが記録された時刻である。レベル情報は、処理対象のセンサの種類および変化後のレベルを示した情報である。 The second log processing unit 303 determines for each of the sensors 201 to 205 whether or not a change in the level of the acquired sensor value has occurred. When the second log processing unit 303 determines that a level change has occurred, the second log processing unit 303 records a sensor log indicating the correspondence between the recording time and the level information. The recording time is the time when the sensor log indicating the recording time is recorded. The level information is information indicating the type of sensor to be processed and the level after the change.
 以下、処理対象が電波センサ201である場合を例にして、センサログ生成処理をより詳細に説明する。図4の(a)は、電波センサ201のセンサ値に適用される閾値1(Rad_Th1)および閾値2(Rad_Th2)とレベルとの関係を示したグラフであり、図4(b)は、電波センサ201のセンサログの一例を示した模式図である。 Hereinafter, the sensor log generation process will be described in more detail using the case where the processing target is the radio wave sensor 201 as an example. 4A is a graph showing the relationship between the threshold value 1 (Rad_Th1) and threshold value 2 (Rad_Th2) applied to the sensor value of the radio wave sensor 201 and the level, and FIG. 4B is the radio wave sensor. FIG. 6 is a schematic diagram illustrating an example of a sensor log 201.
 第2ログ処理部303は、センサ値取得部301に取得された電波センサ201のセンサ値が閾値1以下の場合はレベル0(Lv0)と判定し、センサ値が閾値1を超え閾値2以下の場合はレベル1(Lv1)と判定し、センサ値が閾値2を超えている場合はレベル2(Lv2)と判定する。 The second log processing unit 303 determines that the sensor value of the radio wave sensor 201 acquired by the sensor value acquisition unit 301 is level 0 (Lv0) when the sensor value is less than or equal to the threshold value 1, and the sensor value exceeds the threshold value 1 and is less than or equal to the threshold value 2 In this case, it is determined as level 1 (Lv1), and when the sensor value exceeds the threshold value 2, it is determined as level 2 (Lv2).
 そして、第2ログ処理部303は、電波センサ201について、今回判定されたレベルが前回判定されたレベル(または初期設定されているレベル)から変化しているか否かを判定し、レベルが変化していなければセンサログの記録は行わない。 Then, the second log processing unit 303 determines whether or not the currently determined level of the radio wave sensor 201 has changed from the previously determined level (or the initially set level), and the level changes. If not, the sensor log is not recorded.
 これに対し、第2ログ処理部303は、レベルが変化している場合、記録時刻とレベル情報との対応関係を示したセンサログを記録するようになっている。記録時刻は、当該記録時刻が示されるセンサログが記録された時刻である。レベル情報は、処理対象のセンサの種類および変化後のレベルを示した情報である。 On the other hand, when the level is changed, the second log processing unit 303 records a sensor log indicating the correspondence between the recording time and the level information. The recording time is the time when the sensor log indicating the recording time is recorded. The level information is information indicating the type of sensor to be processed and the level after the change.
 つまり、センサ値取得部301によって5つのセンサ201~205の夫々のセンサ値が同時に取得されるが、そのうち、電波センサ201のセンサ値のレベルが変化したと判定された場合、電波センサ201のセンサログとして、記録時刻とレベル情報との対応関係が記録される。 In other words, the sensor values of the five sensors 201 to 205 are simultaneously acquired by the sensor value acquisition unit 301. If it is determined that the sensor value level of the radio wave sensor 201 has changed, the sensor log of the radio wave sensor 201 is detected. As a result, the correspondence between the recording time and the level information is recorded.
 図4の(b)は、電波センサ201のセンサログの一例である。例えば、参照符500に示されるセンサログのうち、“2015.02.23 16:03:23.266”は当該センサログの記録時刻である。また、“Lv1 RadioWave”はレベル情報であり、“RadioWave”が処理対象のセンサの種類(電波センサ201)であり、“Lv1”が変化後のレベルである。 (B) of FIG. 4 is an example of a sensor log of the radio wave sensor 201. For example, “2015.02.23 16: 03: 23.266” in the sensor log indicated by reference numeral 500 is the recording time of the sensor log. “Lv1 RadioWave” is level information, “RadioWave” is the type of sensor to be processed (radio wave sensor 201), and “Lv1” is the level after the change.
 以上では電波センサ201のセンサログを示したが、第2ログ処理部303は、電波センサ201以外の各センサ202~205についても同様にセンサログを作成する。つまり、図4の(b)においては電波センサ201のセンサログを代表例として示したが、図4の(b)に示すセンサログと同様のセンサログが、電波センサ201以外の各センサ202~205毎に作成されるようになっている。 Although the sensor log of the radio wave sensor 201 has been described above, the second log processing unit 303 similarly creates a sensor log for each of the sensors 202 to 205 other than the radio wave sensor 201. That is, in FIG. 4B, the sensor log of the radio wave sensor 201 is shown as a representative example, but a sensor log similar to the sensor log shown in FIG. 4B is provided for each of the sensors 202 to 205 other than the radio wave sensor 201. It is to be created.
 すなわち、第2ログ処理部303は、センサ値取得部301に各センサ201~205の各々のセンサ値が取得されると、各センサ201~205を順に処理対象として、処理対象のセンサのセンサ値のレベルが変化したか否かを判定して、レベルが変化したと判定した場合に判定対象のセンサのセンサログを生成して記録する。 That is, when the sensor value acquisition unit 301 acquires the sensor values of the sensors 201 to 205, the second log processing unit 303 sets the sensors 201 to 205 as processing targets in order, and sensor values of the processing target sensors. It is determined whether or not the level has changed, and when it is determined that the level has changed, a sensor log of the determination target sensor is generated and recorded.
 つまり、静電気センサ202のセンサ値のレベルが変化したと判定された場合、静電気センサのセンサログとして、記録時刻と、処理対象のセンサの種類(静電気センサ202)および変化後のレベル(静電気センサ202のセンサ値のレベル)を示したレベル情報との対応関係が記録される。 That is, when it is determined that the level of the sensor value of the electrostatic sensor 202 has changed, the recording time, the type of sensor to be processed (static sensor 202), and the level after the change (of the electrostatic sensor 202) are recorded as a sensor log of the electrostatic sensor. The correspondence relationship with the level information indicating the sensor value level) is recorded.
 また、磁気センサ203のセンサ値のレベルが変化したと判定された場合、磁気センサ203のセンサログとして、記録時刻と、判定対象のセンサの種類(磁気センサ203)および変化後のレベル(磁気センサ203のセンサ値のレベル)を示したレベル情報との対応関係が記録される。 When it is determined that the level of the sensor value of the magnetic sensor 203 has changed, the recording time, the type of sensor to be determined (magnetic sensor 203), and the level after the change (magnetic sensor 203) are recorded as a sensor log of the magnetic sensor 203. The correspondence relationship with the level information indicating the sensor value level) is recorded.
 また、加速度センサ204のセンサ値のレベルが変化したと判定された場合、加速度センサ204のセンサログとして、記録時刻と、判定対象のセンサの種類(加速度センサ204)および変化後のレベル(加速度センサ204のセンサ値のレベル)を示したレベル情報との対応関係が記録される。 When it is determined that the level of the sensor value of the acceleration sensor 204 has changed, the sensor time of the acceleration sensor 204 is recorded as the recording time, the type of sensor to be determined (acceleration sensor 204), and the level after the change (acceleration sensor 204). The correspondence relationship with the level information indicating the sensor value level) is recorded.
 また、温度センサ205のセンサ値のレベルが変化したと判定された場合、温度センサ205のセンサログとして、記録時刻と、判定対象のセンサの種類(温度センサ205)および変化後のレベル(温度センサ205のセンサ値のレベル)を示したレベル情報との対応関係が記録される。 When it is determined that the level of the sensor value of the temperature sensor 205 has changed, the sensor time of the temperature sensor 205 is recorded as the recording time, the type of sensor to be determined (temperature sensor 205), and the level after the change (temperature sensor 205). The correspondence relationship with the level information indicating the sensor value level) is recorded.
 第2ログ処理部303は、以上のように、各センサ201~205毎にセンサログを作成して第2記憶部206に保存するようになっている。 As described above, the second log processing unit 303 creates a sensor log for each of the sensors 201 to 205 and stores it in the second storage unit 206.
 つまり、第2記憶部206には、例えば電波センサ201について、図4の(b)に示すように、レベル変化が生じる度に、センサの種類およびレベルを示したレベル情報と記録時刻とを対応付けたセンサログが記録されていく。また、電波センサ201以外の各センサ202~205の各々においても、図4の(b)のセンサログと同様に、レベル変化が生じる度に、センサの種類およびレベルを示したレベル情報と記録時刻とを対応付けたセンサログが記録されていく。 That is, in the second storage unit 206, for example, as shown in FIG. 4B, for the radio wave sensor 201, each time a level change occurs, the level information indicating the type and level of the sensor is associated with the recording time. The attached sensor log is recorded. Also, in each of the sensors 202 to 205 other than the radio wave sensor 201, level information indicating the type and level of the sensor and the recording time each time a level change occurs, as in the sensor log of FIG. 4B. Are recorded in the sensor log.
 なお、センサ値取得部301にて同時に取得された各センサ201~205のセンサ値は、第2ログ処理部303でのセンサログ生成処理に用いられるだけでではなく、通信制御部302によって第1制御装置108へ転送される。そして、第1制御装置108の第1ログ処理部113が、通信制御部302から転送されてきた各センサ201~205のセンサ値を取得し、当該センサ値を用いて、第2ログ処理部303のセンサログ生成処理と同じ処理を実行し、当該処理にて生成される各センサ毎のセンサログを第1記憶部107に保存する。したがって、第1制御装置108および第2制御装置207がいずれも正常に動作している間、第1記憶部107および第2記憶部206には、互いに同じセンサログが記録されることになる。 Note that the sensor values of the respective sensors 201 to 205 acquired simultaneously by the sensor value acquisition unit 301 are not only used for the sensor log generation process in the second log processing unit 303 but also the first control by the communication control unit 302. Transferred to device 108. Then, the first log processing unit 113 of the first control device 108 acquires the sensor values of the respective sensors 201 to 205 transferred from the communication control unit 302, and uses the sensor values to use the second log processing unit 303. The same process as the sensor log generation process is executed, and the sensor log for each sensor generated in the process is stored in the first storage unit 107. Therefore, while both the first control device 108 and the second control device 207 are operating normally, the same sensor log is recorded in the first storage unit 107 and the second storage unit 206.
  (行動推定ログ生成処理について)
 つぎに、行動推定ログ生成処理について説明する。図5は、第1制御装置108にて計測される電力量と、第1制御装置108の状態(動作状態)と、第1制御装置108と第2制御装置207との間の通信の状態と、第1記憶部107に記憶されるログとの関係を示した説明図である。
(About behavior estimation log generation processing)
Next, behavior estimation log generation processing will be described. FIG. 5 shows the amount of electric power measured by the first control device 108, the state (operation state) of the first control device 108, and the state of communication between the first control device 108 and the second control device 207. FIG. 6 is an explanatory diagram showing a relationship with a log stored in the first storage unit 107.
 前述したように、電力量計100に対して電波放出または静電気放電が行われた場合、第2制御装置207は正常動作を継続するものの、第1制御装置108がハングアップしてしまうことがある。図5に示すように、第1制御装置108がハングアップしている間、電力量が計測されないだけではなく、第2制御装置207は第1制御装置108と通信ができなくなる。 As described above, when radio wave emission or electrostatic discharge is performed on the watt hour meter 100, the second control device 207 continues normal operation, but the first control device 108 may hang up. . As shown in FIG. 5, while the first control device 108 is hung up, not only the amount of power is not measured, but also the second control device 207 cannot communicate with the first control device 108.
 したがって、第1制御装置108のハングアップ中、第2制御装置207から第1制御装置108へ各センサ201~205のセンサ値は伝達されないし、そもそも第1制御装置108自体が正常に作動していないため、第1制御装置108によるセンサログ作成処理は行われない。それゆえ、図5に示すように、第1制御装置108の正常動作期間においては、第1制御装置108がセンサログを第1記憶部107に記録するようになっているが、第1制御装置108のハングアップ中、第1制御装置108によるセンサログ生成処理は行われず、第1記憶部107にセンサログが記録されない。 Therefore, during the hang-up of the first control device 108, the sensor values of the sensors 201 to 205 are not transmitted from the second control device 207 to the first control device 108, and the first control device 108 itself is operating normally in the first place. Therefore, the sensor log creation process by the first control device 108 is not performed. Therefore, as shown in FIG. 5, during the normal operation period of the first control device 108, the first control device 108 records the sensor log in the first storage unit 107, but the first control device 108. During the hang-up, the sensor log generation processing by the first control device 108 is not performed, and the sensor log is not recorded in the first storage unit 107.
 すなわち、仮に電力量計100にセキュリティセンサ109が取り付けられていない場合、第1制御装置108が不正行為によってハングアップしている間(つまり電力量計測不能の間)のセンサログは生成・記録されず、不正行為が行われたことを示す情報を残せないことになる。 That is, if the security sensor 109 is not attached to the watt-hour meter 100, a sensor log is not generated / recorded while the first control device 108 is hung up due to fraud (that is, while the power amount cannot be measured). , Information indicating that fraud has been performed cannot be left.
 しかし、本実施形態では、電力量計100にセキュリティセンサ109が取り付けられているため、第1制御装置108が不正行為にてハングアップしている間であっても、セキュリティセンサ109の第2制御装置207がセンサログを生成するため、当該不正行為が行われたことを示す情報(ハングアップされている間のレベル変化ログ)を残すことができる。 However, in this embodiment, since the security sensor 109 is attached to the watt-hour meter 100, the second control of the security sensor 109 is performed even while the first control device 108 is hung up due to an illegal act. Since the device 207 generates a sensor log, information (level change log while being hung up) indicating that the illegal act has been performed can be left.
 但し、ハングアップ期間のセンサログを残しておくだけでは、後で検針員等がログの検証を行う際に効率的な作業を行えないことがある。この点を以下に説明する。 However, simply leaving a sensor log during the hang-up period may prevent the meter reader from performing efficient work later when verifying the log. This point will be described below.
 仮に、第1制御装置108のハングアップ中に第2記憶部206に記憶されたセンサログが第1制御装置108の復帰後に第1制御装置108に送られて第1記憶部107に記憶し、検針員が、定期的に、第1記憶部107に記憶されているセンサログを収集して解析するようになっているものとする。 Temporarily, the sensor log memorize | stored in the 2nd memory | storage part 206 during the hang-up of the 1st control apparatus 108 is sent to the 1st control apparatus 108 after the 1st control apparatus 108 returns, and memorize | stores in the 1st memory | storage part 107, and a meter-reading It is assumed that a member regularly collects and analyzes sensor logs stored in the first storage unit 107.
 この場合、正常動作期間およびハングアップ期間を合わせた期間についてセンサログを解析することになるが、正常動作期間およびハングアップ期間を合わせた期間のセンサログから不正行為を特定することは熟練した検針員でない限り容易ではない。これは、(1)センサログは単なるセンサ値のレベルの履歴でしかないため、ログの分析に不慣れな検針員ではセンサログから不正行為の種類までを特定することが困難であり、(2)正常動作期間およびハングアップ期間を合わせた期間のログは膨大であることから、この膨大なログのなかから不正行為の疑いのあるログを特定するのは分析作業に不慣れな検針員では困難だからである。 In this case, the sensor log is analyzed for the period of the normal operation period and the hang-up period, but it is not a skilled meter reader to identify fraud from the sensor log of the period of the normal operation period and the hang-up period. Not as easy as possible. This is because (1) the sensor log is simply a history of sensor value levels, and it is difficult for meter readers unfamiliar with log analysis to specify from the sensor log to the type of fraud. (2) Normal operation This is because it is difficult for a meter reader who is unfamiliar with analysis work to identify a log suspected of fraudulent activity from the enormous log because the log of the period including the period and the hang-up period is enormous.
 そこで、本実施形態では、第2制御装置207は、第1制御装置108との間での通信不可になった場合(第1制御装置108がハングアップした場合)、通信不可期間から正常通信状態に復帰した後、通信不可期間に生成したセンサログから行動推定ログを生成するようになっている。 Therefore, in the present embodiment, when communication with the first control device 108 is disabled (when the first control device 108 hangs up), the second control device 207 is in a normal communication state from the communication disabled period. After returning to, the behavior estimation log is generated from the sensor log generated during the communication disabled period.
 行動推定ログは、図6に示されるように、センサログから推定される不正行為の種類を示した不正行為情報と、記録時刻との対応関係を示したログである。なお、記録時刻は、当該記録時刻に対応付けられている不正行為情報に示される不正行為の推定の根拠となったセンサログの記録時刻である。 As shown in FIG. 6, the behavior estimation log is a log showing a correspondence relationship between the fraud information indicating the type of fraud estimated from the sensor log and the recording time. Note that the recording time is the recording time of the sensor log that is the basis for the estimation of fraud indicated in the fraud information associated with the recording time.
 第2制御装置207は、通信不可期間(第1制御装置108との通信不可の期間)から正常通信状態(第1制御装置108との通信を正常に行える状態)に復帰した後、通信不可期間にて生成したセンサログから行動推定ログを生成する。そして、第2制御装置207は、通信不可期間のセンサログおよび行動推定ログを第1制御装置108へ送信し、第1制御装置108は、当該センサログおよび行動推定ログを第1記憶部107に記録する。 The second control device 207 returns to a normal communication state (a state in which communication with the first control device 108 can be normally performed) from a communication disabled period (a period in which communication with the first control device 108 is disabled), and then a communication disabled period. A behavior estimation log is generated from the sensor log generated in step (1). Then, the second control device 207 transmits the sensor log and the behavior estimation log during the communication disabled period to the first control device 108, and the first control device 108 records the sensor log and the behavior estimation log in the first storage unit 107. .
 これにより、図5に示すように、第1記憶部107においては、正常期間およびハングアップ期間のセンサログと、ハングアップ期間中の行動推定ログとが記録されることになる。 Thereby, as shown in FIG. 5, in the first storage unit 107, the sensor log of the normal period and the hang-up period and the action estimation log during the hang-up period are recorded.
 そして、検針員は、定期的に、第1記憶部107に記憶されているセンサログおよび行動推定ログを収集できる。それゆえ、検針員からすれば、不正行為の有無および種類を検証するにあたって、センサログを無視して行動推定ログのみを分析すればよく、さらには、行動推定ログには推定される不正行為の種類が示されているため、分析作業に不慣れな検針員でも分析作業が容易である。 Further, the meter reader can periodically collect the sensor log and the action estimation log stored in the first storage unit 107. Therefore, for the meter reader, when verifying the existence and type of fraud, it is only necessary to ignore the sensor log and analyze only the behavior estimation log. Therefore, even a meter reader who is unfamiliar with the analysis work can easily perform the analysis work.
 つぎに、行動推定ログ生成処理の処理内容を説明する。図7は、通信不可期間中に記録されたセンサログを示す図である。図8は、図7に示すセンサログから図6に示す行動推定ログが生成される過程を示した説明図である。図9は、行動推定ログ生成処理にて使用される補正テーブルを示した模式図である。図10は、行動推定ログ生成処理にて使用される第1~第4行動推定テーブルを示した模式図である。 Next, the processing content of the action estimation log generation process will be described. FIG. 7 is a diagram illustrating a sensor log recorded during the communication disabled period. FIG. 8 is an explanatory diagram showing a process of generating the behavior estimation log shown in FIG. 6 from the sensor log shown in FIG. FIG. 9 is a schematic diagram illustrating a correction table used in the behavior estimation log generation process. FIG. 10 is a schematic diagram showing first to fourth behavior estimation tables used in the behavior estimation log generation process.
 まず、セキュリティセンサ109側の第2制御装置207においては、通信制御部302が、第1制御装置108の通信状態を監視している。具体的には、通信制御部302は、第1制御装置108と第2制御装置207との間で通信不可期間が生じる場合、通信不可期間の開始時および終了時(復帰時)を検出するようになっている。 First, in the second control device 207 on the security sensor 109 side, the communication control unit 302 monitors the communication state of the first control device 108. Specifically, when a communication disabled period occurs between the first control device 108 and the second control device 207, the communication control unit 302 detects the start time and end time (return time) of the communication disabled period. It has become.
 第2制御装置207の第2ログ処理部303は、通信制御部302によって通信不可期間の終了時(復帰時)が検出されると、当該通信不可期間に対応する行動推定ログ生成処理を開始する。行動推定ログ生成処理では、最初に通信不可期間のセンサログを収集する収集工程が行われ、その後に図8に示すノイズ除去工程、補正工程、変換工程が順に行われるようになっている。 The second log processing unit 303 of the second control device 207 starts a behavior estimation log generation process corresponding to the communication disabled period when the communication control unit 302 detects the end of communication disabled period (at the time of return). . In the action estimation log generation process, a collecting process for collecting sensor logs during a communication disabled period is first performed, and then a noise removing process, a correcting process, and a converting process shown in FIG. 8 are sequentially performed.
 まず、収集工程について説明する。第2ログ処理部303は、第2記憶部206に記録されているセンサログのなかから、記録時刻が通信制御部302に検出された通信不可期間に属しているセンサログを抽出(収集)する。つまり、第2ログ処理部303は、5つのセンサ201~205の各々について生成されたセンサログから、記録時刻が通信制御部302にて検出された通信不可期間の開始時と終了時との間に属するログを収集する。 First, the collection process will be described. The second log processing unit 303 extracts (collects) sensor logs belonging to the communication disabled period whose recording time is detected by the communication control unit 302 from the sensor logs recorded in the second storage unit 206. In other words, the second log processing unit 303 uses a sensor log generated for each of the five sensors 201 to 205 between the start and end of the communication disabled period in which the recording time is detected by the communication control unit 302. Collect the logs to which it belongs.
 図7は、第2ログ処理部303によって収集された、ある通信不可期間に属しているセンサログである。図7に示すように、収集されたセンサログ(通信不可期間に属しているセンサログ)は、レベル情報に示されるセンサの種類別に区分けされず、センサの種類とは無関係に並べられる。但し、記録時刻が過去のものから順にソートされる。 FIG. 7 shows sensor logs belonging to a certain communication disabled period collected by the second log processing unit 303. As shown in FIG. 7, the collected sensor logs (sensor logs belonging to the communication disabled period) are not classified according to the type of sensor indicated in the level information, but are arranged regardless of the type of sensor. However, the recording times are sorted in order from the past.
 なお、図7のセンサログのレベル情報において、“Lv1”はレベル1を示し、“Lv2”はレベル2を示す。また、“RadioWave”は電波センサ201を示し、“ESD Surge”は静電気センサ202を示し、“Magnet”は磁気センサ203を示し、“Acceleration”は加速度センサ204を示す。 In the sensor log level information of FIG. 7, “Lv1” indicates level 1 and “Lv2” indicates level 2. “RadioWave” indicates the radio wave sensor 201, “ESD Surge” indicates the electrostatic sensor 202, “Magnet” indicates the magnetic sensor 203, and “Acceleration” indicates the acceleration sensor 204.
 収集工程が行われて図7に示すようにログが収集された後、第2ログ処理部303は、収集されたセンサログのうち、レベル情報に示されているセンサの種類毎に最高レベルのセンサログを残し、その他のセンサログを消去(除外)するノイズ除去工程を行う(図8参照)。 After the collecting process is performed and the logs are collected as shown in FIG. 7, the second log processing unit 303 sets the highest level sensor log for each type of sensor indicated in the level information among the collected sensor logs. , And a noise removal step of deleting (excluding) other sensor logs is performed (see FIG. 8).
 例えば、レベル情報が“Acceleration Lv0”のセンサログと、レベル情報が“Acceleration Lv1”のセンサログと、レベル情報が“Acceleration Lv2”のセンサログと、レベル情報が“RadioWave Lv0”のセンサログと、レベル情報が“RadioWave Lv1”のセンサログと、レベル情報が“RadioWave Lv2”のセンサログとが存在する場合、レベル情報が“Acceleration Lv2”のセンサログとレベル情報が“RadioWave Lv2”のセンサログとを残して、他のセンサログを消去する。 For example, a sensor log with level information “Acceleration Lv0”, a sensor log with level information “Acceleration Lv1”, a sensor log with level information “Acceleration Lv2”, a sensor log with level information “RadioWave Lv0”, and level information “ If there is a sensor log for RadioWaveWLv1 and a sensor log for which level information is “RadioWave Lv2”, leave the sensor log for level information “Acceleration2Lv2” and the sensor log for level information “RadioWave Lv2”. to erase.
 また、例えば、レベル情報が“Magnet Lv0”のセンサログと、レベル情報が“Magnet Lv1”のセンサログとが存在するが、レベル情報が“Magnet Lv2”のセンサログが存在しない場合、レベル情報が“Magnet Lv1”のセンサログを残して、レベル情報が“Magnet Lv0”のセンサログを消去する。 Further, for example, when there is a sensor log with level information “Magnet Lv0” and a sensor log with level information “Magnet Lv1”, but there is no sensor log with level information “Magnet Lv2”, the level information is “MagnetvLv1”. The sensor log of “Magnet Lv0” is deleted, leaving the sensor log of “”.
 なお、同じセンサの種類同士において、最高レベルのセンサログが2以上ある場合、全ての最高レベルのレベル変化ログを残す。また、同じセンサの種類同士において、レベル0(Lv0)のセンサログしかない場合、レベル0のセンサログは最高レベルとして扱われずに消去される。 When there are two or more highest level sensor logs for the same sensor type, all the highest level level change logs are left. Further, when there is only a level 0 (Lv0) sensor log among the same sensor type, the level 0 sensor log is not treated as the highest level but is deleted.
 図8の(a)は、図7に示されるセンサログ(ある通信不可期間に属するセンサログ)A~Lを記録時刻の時間軸に沿って並べた模式図である。図8の(b)は、図8の(a)に示されるセンサログA~Lに対してノイズ除去処理が施された後にセンサログB,C,E,G,H,K,Lが残ったことを示す図である。なお、図面において、“Acc”は“Acceleration”の略語であり、“Mag”は“Magnet”の略語であり、“Rad”は“RadioWave”の略語であり、“Sur”は““ESD Surge”の略語である。 FIG. 8A is a schematic diagram in which the sensor logs (sensor logs belonging to a certain communication disabled period) A to L shown in FIG. 7 are arranged along the time axis of the recording time. FIG. 8B shows that the sensor logs B, C, E, G, H, K, and L remain after the noise removal processing is performed on the sensor logs A to L shown in FIG. FIG. In the drawings, “Acc” is an abbreviation for “Acceleration”, “Mag” is an abbreviation for “Magnet”, “Rad” is an abbreviation for “RadioWave”, and “Sur” is “ESD Surge”. Is an abbreviation.
 図8の(a)(b)に示すように、通信不可期間に属しているセンサログのうち、レベル情報に示されているセンサの種類毎に最高レベルのセンサログが残されるが、その他のセンサログは消去(除外)される。このノイズ除去工程は、ノイズと考えられるセンサログ(つまり不正行為と関係の無いセンサログ)を事前に消去することで、最終的に生成される行動推定ログを圧縮してコンパクトにするための措置である。 As shown in FIGS. 8A and 8B, among the sensor logs belonging to the communication disabled period, the highest level sensor log is left for each type of sensor indicated in the level information. Erased (excluded). This noise removal process is a measure for compressing and compacting the action estimation log that is finally generated by deleting in advance the sensor log that is considered to be noise (that is, the sensor log that is not related to fraud). .
 第2ログ処理部303は、図8に示すノイズ除去工程の後、図9の補正テーブルを用いて補正工程を行う。以下、補正工程を説明する。 The second log processing unit 303 performs a correction process using the correction table of FIG. 9 after the noise removal process shown in FIG. Hereinafter, the correction process will be described.
 通常、電波センサ201のセンサ値のレベル変化は電波放出を示し、静電気センサ202のセンサ値のレベル変化はESDを示す。しかし、電波センサ201のセンサ値のレベル変化の時刻と静電気センサ202のセンサ値のレベル変化の時刻とが極めて近く、変化後のセンサ値のレベルが同じである場合、電波放出やESDよりもむしろ妨害波(ジャミング)放出の可能性が高い。また、電波センサ201のレベル変化の時刻と静電気センサ202のレベル変化の時刻とが極めて近く、一方のセンサのセンサ値のレベルと他方のセンサのセンサ値のレベルとが異なる場合、レベルの高い方のセンサ値は確度が高いものの、レベルの低い方のセンサ値はノイズである可能性が高い。 Usually, the level change of the sensor value of the radio wave sensor 201 indicates radio wave emission, and the level change of the sensor value of the electrostatic sensor 202 indicates ESD. However, when the time of the sensor value level change of the radio wave sensor 201 is very close to the time of the sensor value level change of the electrostatic sensor 202 and the level of the sensor value after the change is the same, rather than radio wave emission or ESD. High possibility of jamming emission. In addition, when the time of the level change of the radio wave sensor 201 and the time of the level change of the electrostatic sensor 202 are very close and the sensor value level of one sensor is different from the sensor value level of the other sensor, the higher level Although the sensor value is highly accurate, the sensor value with the lower level is likely to be noise.
 そこで、本実施形態では、図9に示される補正テーブルを予め第2記憶部206に記憶しておき、第2ログ処理部303は、補正テーブルを用いて補正工程を行うようになっている。 Therefore, in the present embodiment, the correction table shown in FIG. 9 is stored in the second storage unit 206 in advance, and the second log processing unit 303 performs the correction process using the correction table.
 補正テーブルは、補正対象センサログのペアと、補正後センサログとの対応関係を示したテーブルである。ここで、図9の補正テーブルの各行において、補正対象センサログがペアで示される一方、補正後センサログが単一で示されているが、これは当該ペアが単一の補正後センサログに補正されるという意味である。 The correction table is a table showing the correspondence between the correction target sensor log pair and the corrected sensor log. Here, in each row of the correction table of FIG. 9, the correction target sensor log is shown as a pair, while the corrected sensor log is shown as a single, but this is corrected to a single corrected sensor log. It means that.
 すなわち、図9の行401は、“Sur Lv2”と“Rad Lv2”とのペアが“Jam Lv1”に補正されることを示しており、単独の“Sur Lv2”が“Jam Lv1”に補正されることを示しているのではないし、単独の“Rad Lv2”が“Jam Lv1”に補正されることを示しているのではない。また、例えば、図9の行402は、“Sur Lv1”と“Rad Lv2”とのペアが“Rad Lv2”に補正されることを示しており、単独の“Sur Lv1”が“Rad Lv2”に補正されることを示しているのではないし、単独の“Rad Lv2”が“Rad Lv2”に補正されることを示しているのではない。 That is, the row 401 in FIG. 9 indicates that the pair of “Sur Lv2” and “RadvLv2” is corrected to “JamvLv1”, and the single “Sur Lv2” is corrected to “Jam Lv1”. It does not indicate that “Rad“ Lv2 ”alone is corrected to“ Jam Lv1 ”. Also, for example, row 402 in FIG. 9 indicates that the pair of “Sur Lv1” and “Rad Lv2” is corrected to “Rad Lv2”, and the single “Sur Lv1” is changed to “Rad Lv2”. It does not indicate that it is corrected, and it does not indicate that a single “Rad Lv2” is corrected to “Rad Lv2”.
 なお、“Jam”は妨害波を示す記号である。つまり、センサログのうち、図9に示す“Jam Lv1”または“Jam Lv2”については、センサの種類ではなく、不正行為の内容が示されることになる(電力量計100に妨害波が放出されると、電磁波放出や静電気放電と同様、第1制御装置108がハングアップする)。 Note that “Jam” is a symbol indicating an interference wave. That is, “Jam Lv1” or “Jam Lv2” shown in FIG. 9 in the sensor log indicates not the type of sensor but the content of fraud (disturbance wave is emitted to the watt-hour meter 100). The first control device 108 hangs up as in the case of electromagnetic wave emission and electrostatic discharge).
 また、図9の補正テーブルの各行の補正対象センサログのペアの成立条件は以下の通りである。図8(b)の記録時刻の時間軸上において、図9の補正テーブルの各行の補正対象センサログのペアのうち左側のログが右側のログよりも過去の時点に位置して両ログが隣り合っており、両ログの記録時刻の差が第1所定時間以内(例えば1secまたは500msec以内)になっていることが条件になる。 Further, the conditions for establishing a pair of correction target sensor logs in each row of the correction table of FIG. 9 are as follows. On the time axis of the recording time in FIG. 8B, the left log of the correction target sensor log pairs in each row of the correction table of FIG. 9 is located at a point in time earlier than the right log, and both logs are adjacent to each other. It is a condition that the difference between the recording times of both logs is within a first predetermined time (for example, within 1 sec or 500 msec).
 そして、第2ログ処理部303は、図8の(b)に示される時間軸上に並ぶ全てのセンサログのなかから、図9の補正テーブルに示される補正対象センサログのペアを探索する。図9に示されるペアと同じペアが抽出された場合、第2ログ処理部303は、当該ペアを、補正テーブルにおいて当該ペアに対応付けられている補正後センサログに補正する。 Then, the second log processing unit 303 searches for a pair of correction target sensor logs shown in the correction table of FIG. 9 from all the sensor logs arranged on the time axis shown in FIG. 8B. When the same pair as the pair shown in FIG. 9 is extracted, the second log processing unit 303 corrects the pair into a corrected sensor log associated with the pair in the correction table.
 例えば、図8の(b)に示されるセンサログは、図9の補正テーブルを用いた補正工程が行われることにより、図8の(c)に示されるセンサログに補正される。つまり、符号Gに示されるセンサログと符号Hに示されるセンサログとのペアは符号H1に示すセンサログに補正される。 For example, the sensor log shown in (b) of FIG. 8 is corrected to the sensor log shown in (c) of FIG. 8 by performing a correction process using the correction table of FIG. That is, the pair of the sensor log indicated by reference sign G and the sensor log indicated by reference sign H is corrected to the sensor log indicated by reference sign H1.
 なお、ペアが重複するような場合は記録時刻が過去のものから優先して処理されることになる。例えば、図8の(b)に示す記録時刻の時間軸上に、第1のセンサログと第2のセンサログと第3のセンサログとが並んでおり、第1~第3のセンサログのうち、記録時刻が最も過去のものが第1のセンサログであり、次に過去のものが第2のセンサログであり、第3のセンサログが最も現時点に近いような状況を想定する。この状況において、第1のセンサログと第2のセンサログとが図9の補正テーブルに示される補正対象センサログのペアの条件を満たし、且つ、第2のセンサログと第3のセンサログとが図9の補正テーブルに示される補正対象センサログのペアの条件を満たすような場合、記録時刻が過去のものから優先してペアが形成されることになる。つまり、第1のセンサログと第2のセンサログとが優先してペアとして扱われ、第2のセンサログと第3のセンサログとはペアとして扱われない。 Note that if the pair overlaps, the recording time is processed with priority from the past. For example, the first sensor log, the second sensor log, and the third sensor log are arranged on the time axis of the recording time shown in FIG. 8B, and the recording time is selected from the first to third sensor logs. Is the first sensor log, the second is the second sensor log, and the third sensor log is closest to the current time. In this situation, the first sensor log and the second sensor log satisfy the condition of the correction target sensor log pair shown in the correction table of FIG. 9, and the second sensor log and the third sensor log are corrected in FIG. When the correction target sensor log pair conditions shown in the table are satisfied, the pair is formed with the recording time prioritized from the past. That is, the first sensor log and the second sensor log are preferentially handled as a pair, and the second sensor log and the third sensor log are not handled as a pair.
 また、例えば、図8の(b)の記録時刻の時間軸上に、第1のセンサログと第2のセンサログと第3のセンサログと第4のセンサログとが並んでおり、第1~第4のセンサログのうち、記録時刻が最も過去のものが第1のセンサログであり、次に過去のものが第2のセンサログであり、次に過去のものが第3のセンサログであり、第4のセンサログが最も現時点に近いような状況を想定する。この状況において、第1のセンサログと第2のセンサログとが図9の補正テーブルに示される補正対象センサログのペアの条件を満たし、第2のセンサログと第3のセンサログとが図9の補正テーブルに示される補正対象センサログのペアの条件を満たし、第3のセンサログと第4のセンサログとが図9の補正テーブルに示される補正対象センサログのペアに該当する場合、記録時刻が過去のものから優先してペアが形成されることになる。つまり、第1のセンサログと第2のセンサログとが優先してペアとして扱われ、第2のセンサログと第3のセンサログとはペアとして扱われない。そして、第3のセンサログは第4のセンサログとの間でペアを形成することになる。 Further, for example, the first sensor log, the second sensor log, the third sensor log, and the fourth sensor log are arranged on the time axis of the recording time in FIG. Of the sensor logs, the one with the oldest recording time is the first sensor log, the next past is the second sensor log, the next past is the third sensor log, and the fourth sensor log is Assume the situation that is closest to the present time. In this situation, the first sensor log and the second sensor log satisfy the conditions of the correction target sensor log pair shown in the correction table of FIG. 9, and the second sensor log and the third sensor log are in the correction table of FIG. When the correction target sensor log pair condition shown is satisfied and the third sensor log and the fourth sensor log correspond to the correction target sensor log pair shown in the correction table of FIG. 9, the recording time is given priority from the past. A pair is formed. That is, the first sensor log and the second sensor log are preferentially handled as a pair, and the second sensor log and the third sensor log are not handled as a pair. The third sensor log forms a pair with the fourth sensor log.
 第2ログ処理部303は、図8に示す補正工程の後、図10に示す4つの行動推定テーブルを用いて変換工程を行う。以下、変換工程を説明する。 The second log processing unit 303 performs the conversion process using the four behavior estimation tables shown in FIG. 10 after the correction process shown in FIG. Hereinafter, the conversion process will be described.
 電力量計100に対して行われる各不正行為と、センサログのパターンとの間には関連性がある。具体的には、図10の第1~第4の行動推定テーブルの各行において、センサログのパターンと不正行為情報との対応関係が示されているが、これは、当該パターンが出現した場合には、当該パターンに対応付けられている不正行為情報に示される不正行為が行われた可能性が高いことを示したものである。 There is a relationship between each fraud performed on the electricity meter 100 and the sensor log pattern. Specifically, in each row of the first to fourth behavior estimation tables in FIG. 10, the correspondence relationship between the sensor log pattern and the fraud information is shown. This indicates that there is a high possibility that the fraud shown in the fraud information associated with the pattern has been performed.
 なお、図10の不正行為情報には、不正行為と、当該不正行為が行われた事の確度を示すレベルとが示されている。例えば、図10の(a)の第1の行動推定テーブルの行501には、“衝撃付与後に妨害波放出 Lv4”との不正行為情報が示されているが、“衝撃付与後に妨害波放出”が不正行為を示し、“Lv4”が確度を示す。なお、レベルが高いほど確度が高い。 Note that the fraud information in FIG. 10 indicates the fraud and the level indicating the accuracy of the fraud. For example, in the row 501 of the first behavior estimation table of FIG. 10A, the fraud information “Impulse wave emission after impact is applied Lv4” is shown. Indicates fraud, and “Lv4” indicates accuracy. The higher the level, the higher the accuracy.
 例えば、図10の(a)の第1の行動推定テーブルの行501には、“Acc Lv2”と“Jam Lv2”とのペアと、“衝撃付与後に妨害波放出 Lv4”とが対応付けられているので、図8の(c)に示す記録時刻の時間軸上にて“Acc Lv2”と“Jam Lv2”とのペアが存在する場合、当該ペアの記録時刻において“衝撃付与後に妨害波放出”という不正行為が行われた可能性があり、その確度はレベル4である。 For example, in the row 501 of the first behavior estimation table in FIG. 10A, a pair of “Acc Lv2” and “Jam Lv2” and “jamming wave emission 後 に Lv4 after application of impact” are associated. Therefore, when there is a pair of “Acc Lv2” and “Jam Lv2” on the time axis of the recording time shown in FIG. 8 (c), “jamming wave emission after impact is applied” at the recording time of the pair. The accuracy is level 4.
 以上のように電力量計100に対して行われる各不正行為とセンサログのパターンとの間に関連性があることから、本実施形態では、図10に示される各行動推定テーブルを予め第2記憶部206に記憶しておき、第2ログ処理部303が、各行動推定テーブルに示されるセンサログのパターンと不正行為情報との対応関係を用いて、センサログを図6に示す行動推定ログへ変換する変換工程を行うようになっている。 As described above, since there is a relationship between each fraud performed on the watt-hour meter 100 and the pattern of the sensor log, in this embodiment, each behavior estimation table shown in FIG. The second log processing unit 303 converts the sensor log into the behavior estimation log shown in FIG. 6 using the correspondence relationship between the sensor log pattern and the fraud information shown in each behavior estimation table. A conversion process is performed.
 まず、図10の各行動推定テーブルについて説明する。図10の各行動推定テーブルの各行のうち、センサログのパターンとしてセンサログのペアが示されている行は、当該ペアが不正行為情報に変換されるという意味を示している。例えば、図10の(a)に示す第1の行動推定テーブルの行501は、“Acc Lv2”と“Jam Lv2”とのペアが“衝撃付与後に妨害波放出 Lv4”に変換されることを示すものであって、単独の“Acc Lv2”が“衝撃付与後に妨害波放出 Lv4”に変換されることを示しているのではないし、単独の“Jam Lv2”が“衝撃付与後に妨害波放出 Lv4”に変換されることを示したものではない。 First, each behavior estimation table in FIG. 10 will be described. Of each row of each behavior estimation table in FIG. 10, a row in which a sensor log pair is shown as a sensor log pattern indicates that the pair is converted into fraud information. For example, row 501 of the first behavior estimation table shown in FIG. 10A indicates that the pair of “Acc Lv2” and “Jam Lv2” is converted to “jamming wave emission Lv4 after application of impact”. It does not indicate that a single “Acc Lv2” is converted to “jamming wave emission 後 に Lv4” after an impact is applied, but a single “Jam Lv2” is “jamming wave emission Lv4” after an impact is applied. It is not shown that it is converted to.
 また、図10の各行動推定テーブルの各行のうち、センサログのパターンとしてセンサログが単独で示されている行は、単独のセンサログが不正行為情報に変換されるという意味を示している。例えば、図10の(a)の第1の行動推定テーブルの行502は、“Jam Lv2”が“妨害波放出 Lv2”に変換されることを示しているのである。 In addition, among the rows of each behavior estimation table in FIG. 10, the row in which the sensor log is shown alone as the sensor log pattern indicates that the single sensor log is converted into fraud information. For example, the row 502 of the first behavior estimation table in FIG. 10A shows that “Jam Lv2” is converted to “jamming wave emission Lv2”.
 なお、“Jam”が示されているセンサログについては、他のセンサログと異なり、センサの種類ではなく、不正行為が示されている(“Jam”は妨害波の意味を示している)。つまり、図10の(a)の第1の行動推定テーブルの行502・503は、不正行為を示す情報から同一の不正行為を示す情報に変換しているに過ぎず、レベルの値自体も変化していないため、実質的な内容が変換されているわけではない。しかし、その他の行については、センサの種類が示されるセンサログのパターンから不正行為情報に変換されているか、若しくは、センサの種類が示されるセンサログと不正行為(Jam)が示されているセンサログとのペアから不正行為情報に変換されているため、実質的な内容の変換を伴っている。 Note that, unlike the other sensor logs, the sensor log in which “Jam” is shown indicates an illegal act instead of the type of sensor (“Jam” indicates the meaning of the jamming wave). That is, the rows 502 and 503 of the first behavior estimation table in FIG. 10A are merely converted from information indicating fraud to information indicating the same fraud, and the level value itself also changes. As a result, the actual contents are not converted. However, for other lines, the sensor log pattern indicating the sensor type has been converted into fraud information, or the sensor log indicating the sensor type and the sensor log indicating the fraud (Jam) Since the pair is converted into fraudulent information, it is accompanied by substantial conversion of contents.
 また、図10の各行動推定テーブルの各行に示されるセンサログのペアの成立条件は以下の通りである。図8(c)の記録時刻の時間軸上において、図10の各行動指定テーブルの各行に示されるセンサログのペアのうち左側のログが右側のログよりも過去の時点に位置して両ログが隣り合っており、両ログの記録時刻の差が第2所定時間以内(例えば15分以内)になっていることが条件になる。なお、第2所定時間は、図9の補正テーブルに示されるペア成立の条件となる第1所定時間(例えば1secまたは500msec)よりも長く設定されている。これは、第1所定時間は、電波センサ201および静電気センサ202がほぼ同時にレベル変化している状況を検出するために設定される時間であるのに対し、第2所定時間は、同一不正者による一連の不正行為(例えばドリルによって衝撃を加えた後に電波放出を行うという行為)を検出するために設定される時間だからである。 Also, the conditions for establishing a pair of sensor logs shown in each row of each behavior estimation table in FIG. 10 are as follows. On the time axis of the recording time in FIG. 8C, the left log of the pair of sensor logs shown in each row of each action designation table in FIG. The condition is that they are adjacent to each other and the difference between the recording times of both logs is within a second predetermined time (for example, within 15 minutes). Note that the second predetermined time is set longer than the first predetermined time (for example, 1 sec or 500 msec) which is a condition for establishing a pair shown in the correction table of FIG. The first predetermined time is a time set for detecting a situation in which the radio wave sensor 201 and the electrostatic sensor 202 are changing levels almost simultaneously, whereas the second predetermined time is determined by the same unauthorized person. This is because the time is set for detecting a series of frauds (for example, an act of emitting radio waves after applying an impact with a drill).
 つまり、図10に示される「衝撃付与後に妨害波放出」「衝撃付与後に静電気放出」「衝撃付与後に電波放出」「衝撃付与後に磁気放出」「磁気放出後に衝撃付与」は、同一不正者による一連の不正行為を指す。 That is, “disturbance wave emission after application of impact”, “electrostatic emission after application of impact”, “radio emission after application of impact”, “magnetic emission after application of impact”, and “application of impact after magnetic emission” shown in FIG. Refers to cheating.
 また、図10に示すように、第1~第4の行動推定テーブルが用意されているが、全ての行動推定テーブルを同時に用いて変換工程を行うのではなく、優先度の高い行動推定テーブルから順に用いられることになる。最も優先度が高いのは図10の(a)の第1の行動推定テーブルであり、二番目に優先度が高いのは図10の(b)の第2の行動推定テーブルであり、三番目に優先度が高いのは図10の(c)の第3の行動推定テーブルであり、最も優先度が低いのは図10の(d)の第4の行動推定テーブルである。 Further, as shown in FIG. 10, the first to fourth behavior estimation tables are prepared, but the conversion process is not performed using all the behavior estimation tables at the same time. They will be used in order. The highest priority is the first behavior estimation table in FIG. 10A, and the second highest priority is the second behavior estimation table in FIG. The third action estimation table in FIG. 10C has a higher priority, and the fourth action estimation table in FIG. 10D has the lowest priority.
 つまり、第2ログ処理部303は、最初に第1~第4の行動推定テーブルのなかから、第1の行動推定テーブルを選択し、センサログを不正行為情報へ変換する処理を行う。具体的には、図8の(c)に示される時間軸上に並ぶ全てのセンサログのなかから、図10の(a)の第1の行動推定テーブルに示されるパターンを探索する。図10の(a)の行動推定テーブルに示されるパターンが抽出された場合、第2ログ処理部303は、当該パターンを、第1の行動推定テーブルにおいて当該パターンに対応付けられている不正行為情報に変換する。 That is, the second log processing unit 303 first selects the first behavior estimation table from the first to fourth behavior estimation tables, and performs processing for converting the sensor log into fraudulent information. Specifically, the pattern shown in the first behavior estimation table in FIG. 10A is searched from all the sensor logs arranged on the time axis shown in FIG. When the pattern shown in the behavior estimation table in FIG. 10A is extracted, the second log processing unit 303 identifies the pattern as the fraud information associated with the pattern in the first behavior estimation table. Convert to
 第2ログ処理部303は、以上のようにして第1の行動推定テーブルによる処理を終えた後、第2の行動推定テーブルを用いて、第1の行動推定テーブルによる処理と同様の処理を行う。また、第2ログ処理部303は、第2の行動推定テーブルによる処理を終えた後、第3の行動推定ログを用いて、第1の行動推定テーブルによる処理と同様の処理を行う。さらに、第2ログ処理部303は、第3の行動推定テーブルによる処理を終えた後、第4の行動推定ログを用いて、第1の行動推定テーブルによる処理と同様の処理を行う。 The second log processing unit 303 performs the same processing as the processing by the first behavior estimation table using the second behavior estimation table after finishing the processing by the first behavior estimation table as described above. . Moreover, after finishing the process by the 2nd action estimation table, the 2nd log process part 303 performs the process similar to the process by the 1st action estimation table using a 3rd action estimation log. Furthermore, after finishing the process by the 3rd action estimation table, the 2nd log process part 303 performs the process similar to the process by the 1st action estimation table using a 4th action estimation log.
 このようにして全ての行動推定テーブルを用いた変換工程が終了すると、図8の(c)に示される各センサログは図8の(d)に示すように各不正行為情報に変換されていることになる。具体的には、符号Bに示されるセンサログと符号Cに示されるセンサログとのペアは符号B1に示す不正行為情報に変換され、符号Eに示されるセンサログと符号H1に示されるセンサログとのペアは符号E1に示す不正行為情報に変換され、符号Kに示されるセンサログは符号K1に示す不正行為情報に変換され、符号Lに示されるセンサログは符号L1に示す不正行為情報に変換される。 When the conversion process using all the behavior estimation tables is completed in this way, each sensor log shown in (c) of FIG. 8 is converted into each fraud information as shown in (d) of FIG. become. Specifically, the pair of the sensor log indicated by reference sign B and the sensor log indicated by reference sign C is converted into fraud information indicated by reference sign B1, and the pair of the sensor log indicated by reference sign E and the sensor log indicated by reference sign H1 is The sensor log indicated by reference sign K1 is converted into the fraud information shown by reference numeral L1, and the sensor log indicated by reference sign K1 is converted by the cheating information indicated by reference sign L1.
 第2ログ処理部303は、このようにして生成した不正行為情報と、当該不正行為情報に対応するセンサログに示されている記録時刻とを対応関係を示したログを行動推定ログとして生成する。図6は、図8の(d)の不正行為情報から作成された行動推定ログである。 The second log processing unit 303 generates, as an action estimation log, a log indicating a correspondence relationship between the fraud information generated in this way and the recording time indicated in the sensor log corresponding to the fraud information. FIG. 6 is an action estimation log created from the fraud information of FIG.
 以上のようにして行動推定ログが生成された後、通信制御部302が、通信不可期間のセンサログと、当該センサログから生成された行動推定ログを第1制御装置108へ送信する。 After the behavior estimation log is generated as described above, the communication control unit 302 transmits the sensor log during the communication disabled period and the behavior estimation log generated from the sensor log to the first control device 108.
  (第2制御装置207の処理の流れ)
 つぎに、セキュリティセンサ109の第2制御装置207の処理の流れの一例を説明する。
(Processing flow of the second control device 207)
Next, an example of the processing flow of the second control device 207 of the security sensor 109 will be described.
 図11は、第2制御装置207の処理全体の流れを示すフローチャートである。図12は、図11のS2の初期化処理のサブルーチンのフローチャートである。図13は、図11のS3のセンサ処理のサブルーチンのフローチャートである。図14A~図14Bは、図13のS57のセンサログ生成処理のサブルーチンを示すフローチャートである。図15は、図13のS62の行動推定ログ生成処理のサブルーチンを示すフローチャートである。 FIG. 11 is a flowchart showing the overall processing flow of the second control device 207. FIG. 12 is a flowchart of a subroutine of the initialization process in S2 of FIG. FIG. 13 is a flowchart of the sensor processing subroutine of S3 of FIG. 14A to 14B are flowcharts showing a subroutine of the sensor log generation process in S57 of FIG. FIG. 15 is a flowchart showing a subroutine of action estimation log generation processing in S62 of FIG.
 まず、図11に示すフローチャートを説明する。第2制御装置207は、電源がオンされると(S1)、図12の初期化処理を行い(S2)、その後に図13のセンサ処理を繰り返すようになっている(S3)。 First, the flowchart shown in FIG. 11 will be described. When the power is turned on (S1), the second control device 207 performs the initialization process of FIG. 12 (S2), and then repeats the sensor process of FIG. 13 (S3).
 つぎに、図12に示す初期化処理のフローチャートを説明する。まず、第2制御装置207は、各センサ201~205毎に2つの閾値(閾値1および閾値2)を設定するようになっている(S21~S25)。なお、S21において、Rad_Th1が電波センサ201の閾値1、Rad_Th2が電波センサ201の閾値2である。S22において、Sur_Th1が静電気センサ202の閾値1、Sur_Th2が静電気センサ202の閾値2である。S23において、Mag_Th1が磁気センサ203の閾値1、Mag_Th2が磁気センサ203の閾値2である。S24において、Acc_Th1が加速度センサ204の閾値1、Acc_Th2が加速度センサ204の閾値2である。S25において、Tem_Th1が温度センサ205の閾値1、Tem_Th2が温度センサ205の閾値2である。 Next, the flowchart of the initialization process shown in FIG. 12 will be described. First, the second control device 207 sets two threshold values (threshold value 1 and threshold value 2) for each of the sensors 201 to 205 (S21 to S25). In S21, Rad_Th1 is the threshold value 1 of the radio wave sensor 201, and Rad_Th2 is the threshold value 2 of the radio wave sensor 201. In S 22, Sur_Th 1 is the threshold value 1 of the electrostatic sensor 202, and Sur_Th 2 is the threshold value 2 of the electrostatic sensor 202. In S23, Mag_Th1 is the threshold value 1 of the magnetic sensor 203, and Mag_Th2 is the threshold value 2 of the magnetic sensor 203. In S24, Acc_Th1 is the threshold value 1 of the acceleration sensor 204, and Acc_Th2 is the threshold value 2 of the acceleration sensor 204. In S25, Tem_Th1 is the threshold value 1 of the temperature sensor 205, and Tem_Th2 is the threshold value 2 of the temperature sensor 205.
 図12のS25の後、第2制御装置207は、各センサ201~205毎に、センサ値のレベルをレベルゼロにリセットする(S26~S30)。なお、S26のRad_Dtctが電波センサ201のレベルであり、S27のSur_Dtctが静電気センサ202のレベルであり、S28のMag_Dtctが磁気センサ203のレベルであり、S29のAcc_Dtctが加速度センサ204のレベルであり、S30のTem_Dtctが温度センサ205のレベルである。なお、フローチャート上には示されていないが、第2制御装置207は、S26~S30にて、各センサ201~205毎に、レベルをゼロにリセットすると共に、レベル0のレベル情報を示したセンサログを生成して第2記憶部206に記憶する。 After S25 in FIG. 12, the second control device 207 resets the sensor value level to zero for each of the sensors 201 to 205 (S26 to S30). Note that Rad_Dtct of S26 is the level of the radio wave sensor 201, Sur_Dtct of S27 is the level of the electrostatic sensor 202, Mag_Dtct of S28 is the level of the magnetic sensor 203, and Acc_Dtct of S29 is the level of the acceleration sensor 204, Tem_Dtct in S30 is the level of the temperature sensor 205. Although not shown in the flowchart, the second control device 207 resets the level to zero for each of the sensors 201 to 205 and displays the level 0 level information in S26 to S30. Is stored in the second storage unit 206.
 図12のS30の後、第2制御装置207は、S3のセンサ処理にて使用される送信失敗計測カウンタをゼロにリセットし(S31)、送信失敗計測カウンタの閾値である送信失敗閾値をセットする(S32)。なお、S31のSendNgCntが送信失敗計測カウンタであり、S32のSendNgが送信失敗閾値である。 After S30 in FIG. 12, the second control device 207 resets the transmission failure measurement counter used in the sensor processing of S3 to zero (S31), and sets a transmission failure threshold that is a threshold of the transmission failure measurement counter. (S32). Note that SendNgCnt in S31 is a transmission failure measurement counter, and SendNg in S32 is a transmission failure threshold.
 図12のS32の後、第2制御装置207は、S3のセンサ処理にて使用される送信成功フラグをゼロにリセットし(S33)、S3のセンサ処理にて使用されるホスト停止フラグをゼロにリセットする(S34)。なお、S33のSendOkが送信成功フラグであり、S34のHostStopがホスト停止フラグである。 After S32 in FIG. 12, the second control device 207 resets the transmission success flag used in the sensor process of S3 to zero (S33), and sets the host stop flag used in the sensor process of S3 to zero. Reset (S34). Note that SendOk in S33 is a transmission success flag, and HostStop in S34 is a host stop flag.
 図12のS34の終了によって図11のS2の初期化処理が終了することになり、次に第2制御装置207はセンサ処理を実行することになる(S3)。 12, the initialization process of S2 of FIG. 11 ends, and then the second control device 207 executes the sensor process (S3).
 つぎに、図13に示すセンサ処理のフローチャートを説明する。図13に示すセンサ処理は、図11のS3のサブルーチンである。 Next, a flowchart of sensor processing shown in FIG. 13 will be described. The sensor process shown in FIG. 13 is a subroutine of S3 in FIG.
 まず、第2制御装置207は、電波センサ201、静電気センサ202、磁気センサ203、加速度センサ204、温度センサ205の各々からセンサ値を取得する(S51)。S51において、RadADは電波センサ201のセンサ値を指し、SurADは静電気センサ202のセンサ値を指し、MagADは磁気センサ203のセンサ値を指し、AccADは加速度センサ204のセンサ値を指し、TemADは温度センサ205のセンサ値を指す。AD1~AD5は、図2に示すように、各センサ201~205から出力される値である。 First, the second control device 207 acquires sensor values from each of the radio wave sensor 201, the electrostatic sensor 202, the magnetic sensor 203, the acceleration sensor 204, and the temperature sensor 205 (S51). In S51, RadAD indicates the sensor value of the radio wave sensor 201, SurAD indicates the sensor value of the electrostatic sensor 202, MagAD indicates the sensor value of the magnetic sensor 203, AccAD indicates the sensor value of the acceleration sensor 204, and TemAD indicates the temperature. The sensor value of the sensor 205 is indicated. AD1 to AD5 are values output from the sensors 201 to 205 as shown in FIG.
 つぎに、第2制御装置207は、S51にて取得した各センサ201~205の各センサ値を第1制御装置108へ送信する(S52)。なお、S52にて「ホスト」と示されているが、「ホスト」は第1制御装置108を指す。 Next, the second control device 207 transmits the sensor values of the sensors 201 to 205 acquired in S51 to the first control device 108 (S52). In addition, although “host” is indicated in S52, “host” indicates the first control device.
 S52の後、第2制御装置207は、S52の送信処理が成功したか否かを判定する(S53)。第2制御装置207は、送信成功と判定した場合(S53にてYES)、送信成功フラグを1にセットし(S54)、処理をS57に移行する。 After S52, the second control device 207 determines whether or not the transmission process of S52 is successful (S53). If second control device 207 determines that transmission is successful (YES in S53), it sets a transmission success flag to 1 (S54), and the process proceeds to S57.
 これに対し、第2制御装置207は、送信失敗と判定した場合(S53にてNO)、送信失敗計測カウンタに1をインクリメントし(S55)、且つ、送信成功フラグをゼロにセットし(S56)、処理をS57に移行する。 In contrast, if second control device 207 determines that the transmission has failed (NO in S53), it increments the transmission failure measurement counter by 1 (S55) and sets the transmission success flag to zero (S56). The process proceeds to S57.
 S57において、第2制御装置207は、センサログ生成処理を実行するようになっている。センサログ生成処理は、既に説明したように、図4の(b)に示されるようなセンサログをセンサ201~205毎に生成する処理である。なお、センサログ生成処理のフローチャートについては後に詳述する。 In S57, the second control device 207 executes a sensor log generation process. The sensor log generation process is a process for generating a sensor log as shown in FIG. 4B for each of the sensors 201 to 205 as described above. The flowchart of the sensor log generation process will be described in detail later.
 図13のS57の後、第2制御装置207は、ホスト停止フラグが1であるか否かを判定する(S58)。第2制御装置207は、ホスト停止フラグが1ではないと判定した場合(S58にてNO)、送信失敗計測カウンタが送信失敗閾値を超えているか否かを判定する(S59)。送信失敗計測カウンタが送信失敗閾値を超えていない場合(S59にてNO)、第2制御装置207は、図13のセンサ処理を最初から繰り返すようになっている(図11のS3)。これに対し、送信失敗計測カウンタが送信失敗閾値を超えている場合(S59にてYES)、第2制御装置207は、ホスト停止フラグを1にセットした上で(S60)、図13のセンサ処理を最初から繰り返すようになっている(図11のS3)。なお、第2制御装置207は、S60にてホスト停止フラグを1にセットした時刻を、通信不可期間の開始時(図8を参照)としてメモリ(不図示)記憶させる。 After S57 in FIG. 13, the second controller 207 determines whether or not the host stop flag is 1 (S58). When determining that the host stop flag is not 1 (NO in S58), second control device 207 determines whether or not the transmission failure measurement counter exceeds the transmission failure threshold (S59). If the transmission failure measurement counter does not exceed the transmission failure threshold (NO in S59), the second control device 207 repeats the sensor process of FIG. 13 from the beginning (S3 of FIG. 11). On the other hand, when the transmission failure measurement counter exceeds the transmission failure threshold (YES in S59), the second control device 207 sets the host stop flag to 1 (S60), and then performs the sensor process of FIG. Is repeated from the beginning (S3 in FIG. 11). Note that the second control device 207 stores the time when the host stop flag is set to 1 in S60 as a memory (not shown) as the start of the communication disabled period (see FIG. 8).
 また、S58においてホスト停止フラグが1であると判定した場合(S58にてYES)、第2制御装置207は、送信成功フラグが1であるか否かを判定する(S61)。送信成功フラグが1でない場合(S61にてNO)、第2制御装置207は、図13のセンサ処理を最初から繰り返すようになっている(図11のS3)。 If it is determined in S58 that the host stop flag is 1 (YES in S58), the second controller 207 determines whether or not the transmission success flag is 1 (S61). If the transmission success flag is not 1 (NO in S61), the second control device 207 repeats the sensor process of FIG. 13 from the beginning (S3 of FIG. 11).
 これに対し、送信成功フラグが1である場合(S61にてYES)、第2制御装置207は、通信不可期間に対する行動推定ログ生成処理を行うようになっている(S62)。行動推定ログ生成処理のフローチャートについては後で説明する。 On the other hand, if the transmission success flag is 1 (YES in S61), the second control device 207 performs an action estimation log generation process for the communication disabled period (S62). A flowchart of the action estimation log generation process will be described later.
 なお、第2制御装置207は、S61にてYESと判定した時を通信不可期間の終了時として検出する。また、S60にてホスト停止フラグを1にセットした時に当該通信不可期間の開始時が記録されている。これにより、第2制御装置207は、通信不可期間の開始時と終了時とを検出しているのである。 The second control device 207 detects the time when YES is determined in S61 as the end of the communication disabled period. Further, when the host stop flag is set to 1 in S60, the start time of the communication disabled period is recorded. Thus, the second control device 207 detects the start time and end time of the communication disabled period.
 S62の後、第2制御装置207は、ホスト停止フラグをゼロにリセットし(S63)、図13のセンサ処理を最初から繰り返すようになっている(図11のS3)。 After S62, the second control device 207 resets the host stop flag to zero (S63), and repeats the sensor processing of FIG. 13 from the beginning (S3 of FIG. 11).
 つぎに、図14Aおよび図14Bに示されるセンサログ生成処理のフローチャートを説明する。図14Aおよび図14Bのセンサログ生成処理は、図13のS57のサブルーチンである。 Next, a flowchart of the sensor log generation process shown in FIGS. 14A and 14B will be described. The sensor log generation process of FIGS. 14A and 14B is a subroutine of S57 of FIG.
 図14Aおよび図14Bにおいては、最初に、電波センサ201のセンサログ生成処理が行われ(S101~S111)、次に静電気センサ202のセンサログ生成処理が行われ(S201~S211)、次に磁気センサ203のセンサログ生成処理が行われ(S301~S311)、次に加速度センサ204のセンサログ生成処理が行われ(S401~S411)が行われ、最後に温度センサ205のセンサログ生成処理が行われる(S501~S511)が行われる。 14A and 14B, first, sensor log generation processing of the radio wave sensor 201 is performed (S101 to S111), then sensor log generation processing of the electrostatic sensor 202 is performed (S201 to S211), and then the magnetic sensor 203. Sensor log generation processing is performed (S301 to S311), then the sensor log generation processing of the acceleration sensor 204 is performed (S401 to S411), and finally the sensor log generation processing of the temperature sensor 205 is performed (S501 to S511). ) Is performed.
 ここで、電波センサ201のセンサログ処理(S101~S111)と、静電気センサ202のセンサログ生成処理(S201~S211)と、磁気センサ203のセンサログ生成処理(S301~S311)と、加速度センサ204のセンサログ生成処理(S401~S411)と、温度センサ205のセンサログ生成処理(S501~S511)とは、処理対象のセンサおよび使用される閾値が異なるだけで、処理内容自体は互いに同じである。それゆえ、以下では、電波センサ201のセンサログ生成処理(S101~S111)を説明し、他のセンサのセンサログ生成処理については説明を省略する。 Here, sensor log processing (S101 to S111) of the radio wave sensor 201, sensor log generation processing (S201 to S211) of the electrostatic sensor 202, sensor log generation processing (S301 to S311) of the magnetic sensor 203, and sensor log generation of the acceleration sensor 204 The processing (S401 to S411) and the sensor log generation processing (S501 to S511) of the temperature sensor 205 are the same as each other, except that the processing target sensor and the threshold used are different. Therefore, hereinafter, sensor log generation processing (S101 to S111) of the radio wave sensor 201 will be described, and description of sensor log generation processing of other sensors will be omitted.
 図14AのS101において、第2制御装置207は、図13のS51にて取得された電波センサ201のセンサ値が閾値2を超えているか否かを判定する(S101)。閾値2を超えている場合(S101にてYES)、センサ値のレベルが変化したか否かを判定する(S103)。なお、S103は、閾値2を超えている場合のレベルが2であるため、現在の電波センサのレベル(Rad_Dtct)がレベル2でないかどうかを判定することで、レベル変化の判定を行うようになっている。 14A, the second control device 207 determines whether or not the sensor value of the radio wave sensor 201 acquired in S51 of FIG. 13 exceeds the threshold 2 (S101). If the threshold value 2 is exceeded (YES in S101), it is determined whether the sensor value level has changed (S103). In S103, since the level when the threshold value 2 is exceeded is 2, the level change is determined by determining whether the current radio wave sensor level (Rad_Dtct) is not level 2. ing.
 S103にてレベルが変化していないと判定する場合、第2制御装置207は、電波センサ201のセンサログ生成処理を終了し、S201以降の静電気センサ202のセンサログ生成処理に移行する(S103にてNO)。これに対し、S103にてレベルが変化していると判定する場合(S103にてYES)、第2制御装置207は、処理対象が電波センサ201であってレベル2であることを示すセンサログを記録する(S106)。なお、センサログには記録時刻も示される。図4の(b)は電波センサ201のセンサログである。S106の後、第2制御装置207は、電波センサ201のレベル(Rad_Dtct)をレベル2にセットした上で(S109)、電波センサ201のセンサログ生成処理を終了し、S201以降の静電気センサ202のセンサログ生成処理に移行する。 When determining that the level has not changed in S103, the second control device 207 ends the sensor log generation processing of the radio wave sensor 201, and proceeds to the sensor log generation processing of the electrostatic sensor 202 after S201 (NO in S103). ). On the other hand, when determining that the level has changed in S103 (YES in S103), the second control device 207 records a sensor log indicating that the processing target is the radio wave sensor 201 and is level 2. (S106). The sensor log also shows the recording time. FIG. 4B is a sensor log of the radio wave sensor 201. After S106, the second control device 207 sets the level (Rad_Dtct) of the radio wave sensor 201 to level 2 (S109), ends the sensor log generation processing of the radio wave sensor 201, and the sensor log of the electrostatic sensor 202 after S201. Transition to generation processing.
 図14AのS101において、閾値2を超えていないと判定する場合(S101にてNO)、第2制御装置207は、電波センサ201のセンサ値が閾値1を超えているか否かを判定する(S102)。閾値1を超えている場合(S102にてYES)、第2制御装置207は、センサ値のレベルが変化したか否かを判定する(S104)。 If it is determined in S101 of FIG. 14A that the threshold value 2 is not exceeded (NO in S101), the second control device 207 determines whether the sensor value of the radio wave sensor 201 exceeds the threshold value 1 (S102). ). If threshold value 1 is exceeded (YES in S102), second control device 207 determines whether the level of the sensor value has changed (S104).
 S104にてレベルが変化していないと判定する場合(S104にてNO)、第2制御装置207は、電波センサ201のセンサログ生成処理を終了し、S201以降の静電気センサ202のセンサログ生成処理に移行する。これに対し、S104にてレベルが変化していると判定する場合(S104にてYES)、第2制御装置207は、処理対象が電波センサ201であってレベル1であることを示すセンサログを記録する(S107)。S107の後、第2制御装置207は、電波センサ201のレベル(Rad_Dtct)をレベル1にセットした上で(S110)、電波センサ201のセンサログ生成処理を終了し、S201以降の静電気センサ202のセンサログ生成処理に移行する。 If it is determined in S104 that the level has not changed (NO in S104), the second control device 207 ends the sensor log generation process of the radio wave sensor 201 and proceeds to the sensor log generation process of the electrostatic sensor 202 after S201. To do. On the other hand, when determining that the level has changed in S104 (YES in S104), the second control device 207 records a sensor log indicating that the processing target is the radio wave sensor 201 and is level 1. (S107). After S107, the second control device 207 sets the level (Rad_Dtct) of the radio wave sensor 201 to level 1 (S110), ends the sensor log generation processing of the radio wave sensor 201, and the sensor log of the electrostatic sensor 202 after S201. Transition to generation processing.
 図14AのS102において、閾値1を超えていないと判定する場合(S102にてNO)、第2制御装置207は、センサ値のレベルが変化したか否かを判定する(S105)。 In S102 of FIG. 14A, when it is determined that the threshold value 1 is not exceeded (NO in S102), the second control device 207 determines whether the level of the sensor value has changed (S105).
 S105にてレベルが変化していないと判定する場合(S105にてNO)、第2制御装置207は、電波センサ201のセンサログ生成処理を終了し、S201以降の静電気センサ202のセンサログ生成処理に移行する。これに対し、S105にてレベルが変化していると判定する場合(S105にてYES)、第2制御装置207は、処理対象が電波センサ201であってレベル0であることを示すセンサログを記録する(S108)。S108の後、第2制御装置207は、電波センサ201のレベル(Rad_Dtct)をレベル0にセットした上で(S111)、電波センサ201のセンサログ生成処理を終了し、S201以降の静電気センサ202のセンサログ生成処理に移行する。 If it is determined in S105 that the level has not changed (NO in S105), the second control device 207 ends the sensor log generation process of the radio wave sensor 201 and proceeds to the sensor log generation process of the electrostatic sensor 202 after S201. To do. On the other hand, when determining that the level has changed in S105 (YES in S105), the second control device 207 records a sensor log indicating that the processing target is the radio wave sensor 201 and is level 0. (S108). After S108, the second control device 207 sets the level (Rad_Dtct) of the radio wave sensor 201 to level 0 (S111), ends the sensor log generation processing of the radio wave sensor 201, and the sensor log of the electrostatic sensor 202 after S201. Transition to generation processing.
 以上のS101~S111が電波センサ201のセンサログ処理である。そして、電波センサ201のセンサログ処理の後に、静電気センサ202のセンサログ生成処理(S201~S211)が行われるが、用いられるパラメータ(センサ値、閾値、レベル等)が静電気センサ202のものに代わるだけで処理内容は電波センサ201のセンサログ処理も静電気センサ202のセンサログ処理も同じである。つまり、S201~S211は、各々、S101~S111と同様の処理である。 The above S101 to S111 are sensor log processing of the radio wave sensor 201. Then, sensor log generation processing (S201 to S211) of the electrostatic sensor 202 is performed after the sensor log processing of the radio wave sensor 201, but the parameters (sensor value, threshold value, level, etc.) used are merely replaced with those of the electrostatic sensor 202. The processing contents are the same for the sensor log processing of the radio wave sensor 201 and the sensor log processing of the electrostatic sensor 202. That is, S201 to S211 are the same processes as S101 to S111, respectively.
 また、磁気センサ203のセンサログ生成処理(S301~S311)、加速度センサのセンサログ生成処理(S401~S411)、温度センサのセンサログ生成処理(S501~S511)も、用いられるパラメータが各々のセンサのものに代わるだけで、処理内容自体は電波センサ201のセンサログ処理と同じである。つまり、S301~S311は、各々、S101~S111と同様の処理であり、S401~S411は、各々、S101~S111と同様の処理であり、S501~S511は、各々、S101~S111と同様の処理である。 In addition, the sensor log generation process (S301 to S311) of the magnetic sensor 203, the sensor log generation process (S401 to S411) of the acceleration sensor, and the sensor log generation process (S501 to S511) of the temperature sensor are also used for each sensor. The processing content itself is the same as the sensor log processing of the radio wave sensor 201 only by replacing it. That is, S301 to S311 are processes similar to S101 to S111, S401 to S411 are processes similar to S101 to S111, and S501 to S511 are processes similar to S101 to S111, respectively. It is.
 それゆえ、図14Aおよび図14Bに示されるS101~S511が行われることにより、各センサ201~205毎のセンサログが生成される。また、S57のセンサログ生成処理を含む図13のセンサ処理は繰り返されるので(図11)、各センサ201~205毎のセンサログは第2記憶部206に蓄積されていく。 Therefore, by performing S101 to S511 shown in FIGS. 14A and 14B, a sensor log for each of the sensors 201 to 205 is generated. 13 including the sensor log generation process of S57 is repeated (FIG. 11), the sensor log for each of the sensors 201 to 205 is accumulated in the second storage unit 206.
 つぎに、図15に示される行動推定ログ生成処理のフローチャートを説明する。図15の行動指定ログ生成処理は図13のS62のサブルーチンである。第1制御装置108との間で通信不可期間が生じて、当該通信不可期間が終了した直後に、図15の行動推定ログ生成処理に移行するようになっている。 Next, a flowchart of the action estimation log generation process shown in FIG. 15 will be described. The action designation log generation process of FIG. 15 is a subroutine of S62 of FIG. A communication disabled period occurs with the first control device 108, and immediately after the communication disabled period ends, the process proceeds to the action estimation log generation process of FIG.
 まず、第2制御装置207は、図15に示される行動推定ログ生成処理に移行すると、図15では図示されていないが、S701の前において、記録時刻が通信不可期間の始点と終点との間であるセンサログを収集する(図7参照)。 First, when the second control device 207 proceeds to the action estimation log generation process shown in FIG. 15, the recording time is between the start point and the end point of the communication disabled period before S <b> 701, although not shown in FIG. 15. Is collected (see FIG. 7).
 S701において、第2制御装置207は、図8に示すように、収集されたセンサログのうち、各センサ201~205毎に最高レベルのセンサログを残すノイズ除去工程を行う。続いて、S702において、第2制御装置207は、図8に示すように補正テーブル(図9参照)によってセンサログを補正する補正工程を行う。 In S701, as shown in FIG. 8, the second control device 207 performs a noise removing process that leaves the highest level sensor log for each of the sensors 201 to 205 among the collected sensor logs. Subsequently, in S702, the second control device 207 performs a correction process for correcting the sensor log using a correction table (see FIG. 9) as shown in FIG.
 続いて、S703において、第2制御装置207は、図10の(a)の第1の行動推定テーブルを用いてセンサログを不正行為情報に変換する変換工程を行い、S704において、第2制御装置207は、図10の(b)の第2の行動推定テーブルを用いてセンサログを不正行為情報に変換する変換工程を行い、S705において、第2制御装置207は、図10の(c)の第3の行動推定テーブルを用いてセンサログを不正行為情報に変換する変換工程を行い、S706において、第2制御装置207は、図10の(d)の第4の行動推定テーブルを用いてセンサログを不正行為情報に変換する変換工程を行う。 Subsequently, in S703, the second control device 207 performs a conversion step of converting the sensor log into fraudulent information using the first behavior estimation table of FIG. 10A, and in S704, the second control device 207. Performs a conversion process of converting the sensor log into fraud information using the second behavior estimation table of FIG. 10B, and in S705, the second control device 207 performs the third process of FIG. In step S706, the second control device 207 uses the fourth behavior estimation table of FIG. 10D to convert the sensor log into a fraudulent act. A conversion process for converting to information is performed.
 第2制御装置207は、このようにして得られた不正行為情報と、当該不正行為情報に対応するセンサログに示されている記録時刻とを対応関係を示したログを行動推定ログとして生成し、通信不可期間のセンサログと、当該行動推定ログとを第1制御装置108へ送信する(S707)。これにより、行動推定ログ生成処理が終了し、処理は図13のS63に移行する。 The second control device 207 generates, as an action estimation log, a log indicating the correspondence between the fraud information obtained in this way and the recording time indicated in the sensor log corresponding to the fraud information, The sensor log during the communication disabled period and the behavior estimation log are transmitted to the first control device 108 (S707). Thereby, the action estimation log generation process ends, and the process proceeds to S63 in FIG.
 なお、第2制御装置207は、通信不可期間のセンサログと行動推定ログとを第1制御装置108に送信した後、通信不可期間のセンサログを第2記憶部206から消去し、且つ、行動推定ログを第2記憶部206に保存するようになっていてもよい。この場合、記憶容量を節約することが可能になる。但し、通信不可期間のセンサログを第2記憶部206に残しつつ行動推定ログをも第2記憶部206に保存するようになっていてもよい。 The second control device 207 transmits the sensor log and the behavior estimation log during the communication disabled period to the first control device 108, and then deletes the sensor log during the communication disabled period from the second storage unit 206, and the behavior estimation log. May be stored in the second storage unit 206. In this case, the storage capacity can be saved. However, the behavior estimation log may be stored in the second storage unit 206 while the sensor log of the communication disabled period is left in the second storage unit 206.
  (第1制御装置108のフローチャート)
 つぎに、電力量計100の第1制御装置108の処理の流れの一例を説明する。図16は、第1制御装置108の処理全体の流れを示すフローチャートである。
(Flowchart of first control device 108)
Next, an example of the processing flow of the first control device 108 of the watt-hour meter 100 will be described. FIG. 16 is a flowchart showing the overall processing flow of the first control apparatus 108.
 まず、第1制御装置108は、電源がオンされると(S11)、初期化処理を行う(S12)。S12の初期化処理は、図12のS21~S31と同じ内容である。なお、ここでは、S32~S35は行われない。 First, when the power is turned on (S11), the first control device 108 performs an initialization process (S12). The initialization process in S12 has the same contents as S21 to S31 in FIG. Here, S32 to S35 are not performed.
 第1制御装置108は、S12の初期化処理の後、セキュリティセンサ109から各センサ201~205のセンサ値を受信する処理(S13)と、S13にて取得したセンサ値に基づくセンサログ生成処理(S14)とを交互に繰り返すようになっている。 After the initialization process of S12, the first control device 108 receives the sensor values of the sensors 201 to 205 from the security sensor 109 (S13), and generates a sensor log based on the sensor values acquired in S13 (S14). ) And are repeated alternately.
 ここで、S14のセンサログ生成処理は、図13のセンサログ生成処理(S57)と同じ内容の処理である。つまり、第1制御装置108は、第2制御装置207が行っているセンサログ生成処理(図14Aおよび図14B)と同じ処理を行うことでセンサログを生成している。なお、第1制御装置108は、センサログ生成処理にて生成される情報(センサログ等)を第1記憶部107に保存するようになっている。 Here, the sensor log generation process of S14 is the same process as the sensor log generation process (S57) of FIG. That is, the first control device 108 generates a sensor log by performing the same processing as the sensor log generation processing (FIGS. 14A and 14B) performed by the second control device 207. Note that the first control device 108 is configured to save information (such as a sensor log) generated in the sensor log generation process in the first storage unit 107.
 また、図16では図示されていないが、第1制御装置108がハングアップすることで第1制御装置108と第2制御装置207との間で通信不可期間が生じ、その後に第1制御装置108が正常状態に戻って通信可能になる場合、第2制御装置207から第1制御装置108へ通信不可期間におけるセンサログおよび行動推定ログが送信されるが、第1制御装置108は、当該センサログおよび行動推定ログを受信して第1記憶部107に保存するようになっている。 Further, although not shown in FIG. 16, the first control device 108 hangs up to cause a communication disabled period between the first control device 108 and the second control device 207, and then the first control device 108. Is returned to the normal state and communication becomes possible, the sensor log and the behavior estimation log in the communication disabled period are transmitted from the second control device 207 to the first control device 108. The first control device 108 The estimation log is received and stored in the first storage unit 107.
  (本実施形態の利点)
 本実施形態によれば、電力量計100に対して電波放出または静電気放電が行われて第1制御装置108がハングアップしても、第2制御装置207までハングアップしてしまうことが抑制される。よって、電波放出または静電気放電による不正行為によって第1制御装置108がハングアップしている間、第2制御装置207が前記センサログを生成できるため、電波放出または静電気放電による不正行為の形跡を残すことができ、当該不正行為を検出することが可能になる。
(Advantages of this embodiment)
According to this embodiment, even if radio wave emission or electrostatic discharge is performed on the watt-hour meter 100 and the first control device 108 is hung up, it is possible to prevent the second control device 207 from being hung up. The Therefore, since the second control device 207 can generate the sensor log while the first control device 108 is hung up due to fraud due to radio wave emission or electrostatic discharge, it leaves a trace of fraud due to radio wave emission or electrostatic discharge. And it becomes possible to detect the fraud.
 また、本実施形態の構成によれば、第2制御装置207は、第1制御装置108がハングアップして第1制御装置108との間で通信不可期間が生じると、当該通信不可期間に生成された前記センサログから推定される不正行為の種類を示した行動推定ログを生成するようになっている。これにより、検針員は、不正行為の有無および種類を検証するにあたって、センサログを無視して行動推定ログのみを分析すればよく、さらには、行動推定ログに不正行為の種類が示されているため、分析作業に不慣れな検針員でも分析作業が容易になる。 Further, according to the configuration of the present embodiment, when the first control device 108 hangs up and a communication disabled period occurs with the first control device 108, the second control device 207 generates the communication disabled period. The behavior estimation log indicating the type of fraud estimated from the sensor log thus generated is generated. As a result, the meter reader need only analyze the behavior estimation log ignoring the sensor log when verifying the presence and type of fraud, and the behavior estimation log indicates the type of fraud. Even an inexperienced meter reader can easily perform analysis work.
 また、本実施形態の構成によれば、互いに異なるセンサのペアのセンサ値から、同一不正者による一連の不正行為を示す行動推定ログが生成されるようになっている(図10)。これにより、例えば加速度センサ204のセンサ値と電波センサ201のセンサ値とから、「衝撃付与後の電波放出」というような不正行為を示す行動推定ログを生成することができ、行動指定ログに示すことの可能な不正行為の種類(バリエーション)を増加させることができる。 Further, according to the configuration of the present embodiment, an action estimation log indicating a series of fraudulent acts by the same unauthorized person is generated from sensor values of different sensor pairs (FIG. 10). As a result, for example, an action estimation log indicating an illegal act such as “radiation of radio waves after applying an impact” can be generated from the sensor value of the acceleration sensor 204 and the sensor value of the radio wave sensor 201. It is possible to increase the types (variations) of possible misconduct.
 なお、本実施形態のセンサログ(図4の(b))には、センサ値の高さを示す出力情報としてセンサ値のレベルが示されているが、前記出力情報としてセンサ値のレベルの代わりにセンサ値自体を示してもよい。但し、この場合、センサ値でも図9および図10のテーブルを使用できるように、各テーブルを適宜修正する必要がある。 In the sensor log ((b) of FIG. 4) of the present embodiment, the sensor value level is shown as output information indicating the height of the sensor value, but instead of the sensor value level as the output information. The sensor value itself may be indicated. However, in this case, it is necessary to appropriately modify each table so that the tables of FIGS. 9 and 10 can be used even with sensor values.
 また、本実施形態のセンサログ(図4の(b))には、センサ値のレベルの他にセンサ値も含ませてもよい。例えば、電波センサ201のセンサ値のレベルが変化した場合、図4の(b)に示す記録時刻およびレベル情報の他、電波センサ201のセンサ値を含ませ、さらにセンサ202~204のセンサ値も電波センサ201のセンサログに含ませるようになっていてもよい(つまり、レベル変化したセンサのセンサログに、当該センサのセンサ値だけでなく他のセンサのセンサ値も含ませる)。また、センサログに含ませるセンサ値は、S51にて取得された値でもよいし、レベル変化したと判定される時点(S103~S105、S203~S205、S303~S305、S403~S405、S503~S505)で新たに各センサ201~205から取得する値であってもよい。 In addition, the sensor log (FIG. 4B) of this embodiment may include a sensor value in addition to the sensor value level. For example, when the level of the sensor value of the radio wave sensor 201 changes, the sensor value of the radio wave sensor 201 is included in addition to the recording time and level information shown in FIG. 4B, and the sensor values of the sensors 202 to 204 are also included. It may be included in the sensor log of the radio wave sensor 201 (that is, the sensor log of the sensor whose level has changed includes not only the sensor value of the sensor but also the sensor values of other sensors). The sensor value included in the sensor log may be the value acquired in S51, or the time when it is determined that the level has changed (S103 to S105, S203 to S205, S303 to S305, S403 to S405, S503 to S505). The value may be newly acquired from each of the sensors 201 to 205.
 [実施の形態2]
 実施形態1は、第2制御装置207が、第1制御装置108との間の通信状態が復帰したことを検出すると、通信不可期間のセンサログから行動推定ログを生成するようになっている構成であるが、以下に述べる形態であってもよい。
[Embodiment 2]
In the first embodiment, when the second control device 207 detects that the communication state with the first control device 108 has been restored, the behavior estimation log is generated from the sensor log during the communication disabled period. However, it may be in the form described below.
 本形態では、第1制御装置108が、ハングアップ等の異常状態から正常動作状態に復帰すると、ログ要求コマンドを第2制御装置207へ送信し、第2制御装置207は、ログ要求コマンドを受信すると、通信不可期間のセンサログから行動推定ログを生成し、これらログを第1制御装置108へ送信するようになっている。以下、当該形態のフローチャートを説明する。 In this embodiment, when the first control device 108 returns to the normal operation state from an abnormal state such as a hang-up, the log request command is transmitted to the second control device 207, and the second control device 207 receives the log request command. Then, an action estimation log is generated from the sensor log during the communication disabled period, and these logs are transmitted to the first control device 108. Hereinafter, a flowchart of the embodiment will be described.
 図17は、実施の形態2に係る第1制御装置108の処理の流れを示すフローチャートである。 FIG. 17 is a flowchart showing a process flow of the first control device 108 according to the second embodiment.
 第1制御装置108は、正常動作のできない異常状態(ハングアップ)から正常動作状態に復帰すると(S900)、第2制御装置207に対してログ要求コマンドを送信する(S901)。 When the first control device 108 returns to the normal operation state from the abnormal state where the normal operation cannot be performed (hang-up) (S900), the first control device 108 transmits a log request command to the second control device 207 (S901).
 ここで、ログ要求コマンドを受信した第2制御装置207は、通信不可期間において生成されたセンサログであって第1制御装置108へ未送信のセンサログがある場合、当該センサログから行動推定ログを作成し、当該センサログおよび行動指定ログを第1制御装置108へ送信するようになっている。 Here, the second control device 207 that has received the log request command creates a behavior estimation log from the sensor log when there is a sensor log that has been generated during the communication disabled period and has not been transmitted to the first control device 108. The sensor log and the action designation log are transmitted to the first control device 108.
 それゆえ、S901の後、第1制御装置108は、通信不可期間のセンサログであって第1制御装置108へ未送信のセンサログがある場合(S902にてYES)、当該センサログおよび行動指定ログを第2制御装置207から受信して第1記憶部107へ保存する(S903)。S901の後、第1制御装置108は処理をS904へ移行する。 Therefore, after S901, when there is a sensor log that has not been transmitted to the first control apparatus 108 (YES in S902), the first control apparatus 108 displays the sensor log and the action designation log as the first log. 2 Received from the control device 207 and stored in the first storage unit 107 (S903). After S901, the first control device 108 shifts the process to S904.
 なお、第1制御装置108は、通信不可期間のセンサログであって第1制御装置108へ未送信のセンサログがない場合(S902にてNO)、S903をスキップして処理をS904へ移行する。 The first control device 108 skips S903 and shifts the processing to S904 when there is no sensor log that has not been transmitted to the first control device 108 (NO in S902).
 図17のS904~S906は、各々、図16のS12~S14と同じ処理であるため、その説明を省略する。 Since S904 to S906 in FIG. 17 are the same processes as S12 to S14 in FIG.
 図18は、実施の形態2に係る第2制御装置207の処理の流れを示すフローチャートである。 FIG. 18 is a flowchart showing a process flow of the second control device 207 according to the second embodiment.
 第2制御装置207は、電源がオンされると(S951)、まず初期化処理を行うようになっている(S952)。なお、S952の初期化処理は、図12のS21~S31と同じ内容である。なお、ここでは、S32~S35は行われない。 When the power is turned on (S951), the second control device 207 first performs an initialization process (S952). The initialization process in S952 has the same contents as S21 to S31 in FIG. Here, S32 to S35 are not performed.
 つぎに、第2制御装置207は、電波センサ201、静電気センサ202、磁気センサ203、加速度センサ204、温度センサ205の各々からセンサ値を取得する(S953)。続いて、第2制御装置207は、S953にて取得した各センサ201~205の各センサ値を第1制御装置108へ送信する(S954)。 Next, the second control device 207 acquires sensor values from each of the radio wave sensor 201, the electrostatic sensor 202, the magnetic sensor 203, the acceleration sensor 204, and the temperature sensor 205 (S953). Subsequently, the second control device 207 transmits the sensor values of the sensors 201 to 205 acquired in S953 to the first control device 108 (S954).
 つぎに、第2制御装置207は、S953にて取得したセンサ値に基づくセンサログ生成処理(S955)を行う。S955のセンサログ生成処理は、図13のセンサログ生成処理(S57)と同じ内容の処理である。つまり、図14Aおよび図14Bは、S955のセンサログ生成処理のサブルーチンでもある。 Next, the second control device 207 performs a sensor log generation process (S955) based on the sensor value acquired in S953. The sensor log generation process in S955 is the same process as the sensor log generation process (S57) in FIG. That is, FIG. 14A and FIG. 14B are also a subroutine of the sensor log generation process of S955.
 S955の後、第2制御装置207は、第1制御装置108からログ要求コマンドを受信したか否かを判定する(S956)。第1制御装置108からログ要求コマンドを受信していない場合(S956にてNO)、第2制御装置207は、処理をS953に移行し、S953以降の処理を繰り返す。 After S955, the second control device 207 determines whether a log request command has been received from the first control device 108 (S956). If a log request command has not been received from first control device 108 (NO in S956), second control device 207 proceeds to S953 and repeats the processing from S953 onward.
 第1制御装置108からログ要求コマンドを受信している場合(S956にてYES)、第2制御装置207は、通信不可期間に記録されたセンサログであって第1制御装置108へ未送信のセンサログが存在するか否かを判定する(S957)。なお、図18では図示されていないが、本実施形態においても、第2制御装置207は、第1制御装置108との間で通信不可期間が生じると、当該通信不可期間の開始時と終了時とを検出するようになっているので、通信不可期間を認識可能である。そして、第2制御装置207は、当該通信不可期間に記録されたセンサログであって第1制御装置108へ未送信のセンサログの有無を判定するようになっている。なお、第1制御装置108へ送信されたセンサログが第2記憶部206から消去される形態であれば、第2制御装置207は、当該通信不可期間に記録されたセンサログを第2記憶部206にて検索するだけで、当該通信不可期間に記録されたセンサログであって第1制御装置108へ未送信のセンサログの有無を判定できる。また、第1制御装置108へ送信されたセンサログが第2記憶部206に記憶され続ける形態であっても、送信済のセンサログに送信済を示すフラグを付加しておけば、第2制御装置207は、通信不可期間に記録されたセンサログであって第1制御装置108へ未送信のセンサログの有無を判定できる。 If a log request command has been received from first control device 108 (YES in S956), second control device 207 is a sensor log that has been recorded during the communication disabled period and has not been transmitted to first control device 108. Is determined (S957). Although not shown in FIG. 18, also in the present embodiment, the second control device 207 starts and ends the communication disabled period when a communication disabled period occurs with the first control device 108. , So that the communication disabled period can be recognized. Then, the second control device 207 determines whether there is a sensor log that has been recorded during the communication disabled period and has not been transmitted to the first control device 108. If the sensor log transmitted to the first control device 108 is deleted from the second storage unit 206, the second control device 207 stores the sensor log recorded during the communication disabled period in the second storage unit 206. By simply searching, it is possible to determine whether there is a sensor log that has been recorded during the communication disabled period and has not been transmitted to the first control device 108. Further, even if the sensor log transmitted to the first control device 108 is continuously stored in the second storage unit 206, the second control device 207 can be provided by adding a flag indicating that the sensor log has already been transmitted to the transmitted sensor log. Can be determined whether there is a sensor log recorded during the communication disabled period and not transmitted to the first control device 108.
 第2制御装置207は、通信不可期間に記録されたセンサログであって第1制御装置108へ未送信のセンサログが存在しない場合(S957にてNO)、処理をS953に移行し、S953以降の処理を繰り返す。 If the second control device 207 is a sensor log recorded during the communication disabled period and there is no sensor log that has not been transmitted to the first control device 108 (NO in S957), the second control device 207 proceeds to S953, and the processing after S953 repeat.
 これに対し、第2制御装置207は、通信不可期間に記録されたセンサログであって第1制御装置108へ未送信のセンサログが存在する場合(S957にてYES)、行動推定ログ生成処理を行うようになっている(S958)。S958の行動推定ログ生成処理は、図13の行動推定ログ生成処理(S62)と同じ内容の処理である。つまり、図15は、S958の行動推定ログ生成処理のサブルーチンでもある。 In contrast, if there is a sensor log that has been recorded during the communication disabled period and has not been transmitted to first control device 108 (YES in S957), second control device 207 performs action estimation log generation processing. (S958). The action estimation log generation process of S958 is the same process as the action estimation log generation process (S62) of FIG. That is, FIG. 15 is also a subroutine of the action estimation log generation process of S958.
 それゆえ、S958の行動推定ログ生成処理が実行されると、通信不可期間のセンサログから行動推定ログが生成され、当該センサログおよび行動推定ログが第1制御装置108へ送信される。 Therefore, when the action estimation log generation process of S958 is executed, an action estimation log is generated from the sensor log during the communication disabled period, and the sensor log and the action estimation log are transmitted to the first control device 108.
 第2制御装置207は、S958の行動推定ログ生成処理を終えると、処理をS953に移行し、S953以降の処理を繰り返す。 When the second control device 207 finishes the action estimation log generation process in S958, the second control apparatus 207 shifts the process to S953 and repeats the processes after S953.
 [実施形態のまとめ]
 以上の各実施形態によれば、電力量を出力するための表示部または外部通信ポートとの間で信号の送受信を行い、且つ前記電力量を計測する第1制御装置を備えた電力量計に収容されるものであり、前記電力量計に対する不正行為を検出するための検出装置であって、少なくとも電波センサおよび静電気センサを含む複数のセンサと、前記第1制御装置とは異なる回路基板であり前記第1制御装置との間で信号の送受信を行う第2制御装置とを備え、前記第2制御装置は、前記複数のセンサの各々について出力値の高さを示す出力情報の履歴を示したセンサログを生成するセンサログ生成処理と、前記第1制御装置との間で通信不可期間が生じた場合、当該通信不可期間に生成された前記センサログから推定される不正行為の種類を示した行動推定ログを生成する行動推定ログ生成処理とを実行することを特徴とする。
[Summary of Embodiment]
According to each of the embodiments described above, the watt-hour meter including the first control device that transmits and receives a signal to and from the display unit or the external communication port for outputting the power amount and measures the power amount. A detection device for detecting fraudulent acts with respect to the watt-hour meter, and a plurality of sensors including at least a radio wave sensor and an electrostatic sensor, and a circuit board different from the first control device A second control device that transmits and receives signals to and from the first control device, and the second control device shows a history of output information that indicates the height of the output value for each of the plurality of sensors. A line indicating the type of fraud estimated from the sensor log generated during the communication disabled period when a communication disabled period occurs between the sensor log generating process for generating the sensor log and the first control device. And executes a behavior prediction log generation process for generating an estimated log.
 この構成によれば、第1制御装置は表示部または外部通信ポートとの間で信号の送受信を行うようになっているが、第2制御装置は表示部または外部通信ポートとの間で信号の送受信を行うようになっていないため、第2制御装置は、電波放出または静電気放電に対する耐性が少なくとも第1制御装置より高くなる。それゆえ、電力量計に対して電波放出または静電気放電が行われて第1制御装置がハングアップしても、第2制御装置までハングアップしてしまうことが抑制される。よって、電波放出または静電気放電による不正行為によって第1制御装置がハングアップしている間、第2制御装置が前記センサログを生成できるため、電波放出または静電気放電による不正行為の形跡を残すことができ、当該不正行為を検出することが可能になるという第1の効果を奏する。 According to this configuration, the first control device transmits and receives signals to and from the display unit or the external communication port, but the second control device transmits and receives signals to and from the display unit or the external communication port. Since transmission / reception is not performed, the second control device is more resistant to radio wave emission or electrostatic discharge than at least the first control device. Therefore, even if radio wave emission or electrostatic discharge is performed on the watt hour meter and the first control device hangs up, the hang up to the second control device is suppressed. Therefore, since the second control device can generate the sensor log while the first control device is hung up due to fraud due to radio wave emission or electrostatic discharge, it is possible to leave a trace of fraud due to radio wave emission or electrostatic discharge. The first effect is that the fraud can be detected.
 また、以下に示す第2の効果も奏する。前記センサログは、第1制御装置がハングアップされている間だけでなく正常に動作している間も生成されることになるが、正常動作期間およびハングアップ期間を合わせた期間のセンサログから不正行為を特定することは熟練した検針員(ログ分析者)でない限り容易ではない。これは、(1)センサログは単なるセンサ出力値の高さを示した出力情報(出力値のレベル等)の履歴でしかないため、ログの分析に不慣れな検針員ではセンサログから不正行為の種類までを特定することが困難であり、(2)正常動作期間およびハングアップ期間を合わせた期間のログは膨大であることから、この膨大なログのなかから不正行為の疑いのあるログを特定するのは分析作業に不慣れな検針員では困難だからである。そこで、本発明の構成によれば、第2制御装置は、第1制御装置がハングアップして第1制御装置との間で通信不可期間が生じると、当該通信不可期間に生成された前記センサログから推定される不正行為の種類を示した行動推定ログを生成するようになっている。これにより、検針員は、不正行為の有無および種類を検証するにあたって、センサログを無視して行動推定ログのみを分析すればよく、さらには、行動推定ログに不正行為の種類が示されているため、分析作業に不慣れな検針員でも分析作業が容易という第2の効果を奏する。 Also, the following second effect is achieved. The sensor log is generated not only while the first control device is hung up but also during normal operation. It is not easy to identify the person unless it is a skilled meter reader (log analyst). This is because (1) the sensor log is simply a history of output information (output value level, etc.) indicating the height of the sensor output value. (2) Since the log of the period of the normal operation period and the hang-up period is enormous, the log that is suspected of fraud is identified from this enormous log. This is because it is difficult for a meter reader who is unfamiliar with analysis work. Therefore, according to the configuration of the present invention, when the first control device hangs up and a communication disabled period occurs with the first control device, the second control device generates the sensor log generated during the communication disabled period. A behavior estimation log indicating the type of fraud estimated from the above is generated. As a result, the meter reader need only analyze the behavior estimation log ignoring the sensor log when verifying the presence and type of fraud, and the behavior estimation log indicates the type of fraud. The second effect is that even an inexperienced meter reader can easily perform the analysis work.
 以上の実施形態1のように、前記第2制御装置は、前記第1制御装置との間で通信不可期間が生じた場合、前記通信不可期間が終了して前記第1制御装置との間で通信可能になったことを検出すると、前記行動推定ログを生成するようになっていてもよい。 As in the first embodiment, when the communication impossibility period occurs between the second control device and the first control device, the communication impossibility period ends and the second control device communicates with the first control device. When it is detected that communication is possible, the behavior estimation log may be generated.
 また、以上の実施形態2のように、前記第1制御装置は、正常動作のできない異常状態から正常動作状態に復帰するとログ要求コマンドを前記第2制御装置に送信するようになっており、前記第2制御装置は、前記ログ要求コマンドを受信すると前記行動推定ログを生成するようになっていてもよい。 Further, as in the second embodiment, the first control device is configured to transmit a log request command to the second control device when returning from an abnormal state where normal operation cannot be performed to the normal operation state. The second control apparatus may generate the behavior estimation log when receiving the log request command.
 また、前記複数のセンサには、磁気センサ、加速度センサ、および温度センサが含まれていてもよい。 The plurality of sensors may include a magnetic sensor, an acceleration sensor, and a temperature sensor.
 また、以上の各実施形態において、前記第2制御装置は、互いに異なるセンサのペアの出力値から、同一不正者による一連の不正行為を示す行動推定ログを生成するようになっていてもよい。 Further, in each of the above embodiments, the second control device may generate a behavior estimation log indicating a series of fraudulent acts by the same fraudster from output values of different sensor pairs.
 これにより、例えば加速度センサの出力値と電波センサの出力値とから、「衝撃付与後の電波放出」というような不正行為を示す行動推定ログを生成することができ、行動指定ログに示すことの可能な不正行為の種類を増加させることができる。 As a result, for example, an action estimation log indicating an illegal act such as “radiation of radio waves after applying an impact” can be generated from the output value of the acceleration sensor and the output value of the radio wave sensor. The types of possible cheating can be increased.
 また、以上にて示した検出装置(セキュリティセンサ109)は電力量計100に収容されるものである。 Further, the detection device (security sensor 109) described above is accommodated in the watt-hour meter 100.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、デジタル方式で電力量を計測する電力量計に利用できる。 The present invention can be used for a watt-hour meter that measures the amount of power in a digital manner.
  100  電力量計
  104  表示部
  105  外部通信部(外部通信ポート)
  108  第1制御装置
  109  セキュリティセンサ(検出装置)
  201  電波センサ
  202  静電気センサ
  203  磁気センサ
  204  加速度センサ
  205  温度センサ
  207  第2制御装置
 
100 Electricity meter 104 Display unit 105 External communication unit (external communication port)
108 First control device 109 Security sensor (detection device)
201 Radio wave sensor 202 Electrostatic sensor 203 Magnetic sensor 204 Acceleration sensor 205 Temperature sensor 207 Second controller

Claims (6)

  1.  電力量を出力するための表示部または外部通信ポートとの間で信号の送受信を行い、且つ前記電力量を計測する第1制御装置を備えた電力量計に収容されるものであり、前記電力量計に対する不正行為を検出するための検出装置であって、
     少なくとも電波センサおよび静電気センサを含む複数のセンサと、前記第1制御装置とは異なる回路基板であり前記第1制御装置との間で信号の送受信を行う第2制御装置とを備え、
     前記第2制御装置は、前記複数のセンサの各々について出力値の高さを示す出力情報の履歴を示したセンサログを生成するセンサログ生成処理と、前記第1制御装置との間で通信不可期間が生じた場合、当該通信不可期間に生成された前記センサログから推定される不正行為の種類を示した行動推定ログを生成する行動推定ログ生成処理とを実行することを特徴とする検出装置。
    A signal is transmitted / received to / from a display unit or an external communication port for outputting electric energy, and is housed in an electric energy meter including a first control device that measures the electric energy. A detection device for detecting fraud against a meter,
    A plurality of sensors including at least a radio wave sensor and an electrostatic sensor, and a second control device that is a circuit board different from the first control device and transmits and receives signals to and from the first control device,
    The second control device has a non-communication period between a sensor log generation process for generating a sensor log indicating a history of output information indicating a height of an output value for each of the plurality of sensors, and the first control device. And a behavior estimation log generation process for generating a behavior estimation log indicating a type of fraud estimated from the sensor log generated during the communication disabled period.
  2.  前記第2制御装置は、前記第1制御装置との間で通信不可期間が生じた場合、前記通信不可期間が終了して前記第1制御装置との間で通信可能になったことを検出すると、前記行動推定ログを生成するようになっていることを特徴とする請求項1に記載の検出装置。 The second control device detects that the communication disabled period has ended and communication with the first control device is enabled when a communication disabled period has occurred with the first control device. The detection apparatus according to claim 1, wherein the behavior estimation log is generated.
  3.  前記第1制御装置は、正常動作のできない異常状態から正常動作状態に復帰するとログ要求コマンドを前記第2制御装置に送信するようになっており、
     前記第2制御装置は、前記ログ要求コマンドを受信すると前記行動推定ログを生成するようになっていることを特徴とする請求項1に記載の検出装置。
    The first control device is configured to transmit a log request command to the second control device when the normal operation state is restored from the abnormal state where the normal operation is not possible.
    The detection device according to claim 1, wherein the second control device generates the behavior estimation log when receiving the log request command.
  4.  前記複数のセンサには、磁気センサ、加速度センサ、および温度センサが含まれていることを特徴とする請求項1から3のいずれか1項に記載の検出装置。 4. The detection device according to claim 1, wherein the plurality of sensors include a magnetic sensor, an acceleration sensor, and a temperature sensor.
  5.  前記第2制御装置は、互いに異なるセンサのペアの出力値から、同一不正者による一連の不正行為を示す行動推定ログを生成することを特徴とする請求項4に記載の検出装置。 The detection device according to claim 4, wherein the second control device generates a behavior estimation log indicating a series of fraudulent acts by the same fraudulent person from output values of different pairs of sensors.
  6.  請求項1から5のいずれか1項に記載されている検出装置を収容したことを特徴とする電力量計。
     
     
    A watt hour meter comprising the detection device according to any one of claims 1 to 5.

PCT/JP2015/056860 2015-03-09 2015-03-09 Detection device and power meter WO2016143043A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056860 WO2016143043A1 (en) 2015-03-09 2015-03-09 Detection device and power meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056860 WO2016143043A1 (en) 2015-03-09 2015-03-09 Detection device and power meter

Publications (1)

Publication Number Publication Date
WO2016143043A1 true WO2016143043A1 (en) 2016-09-15

Family

ID=56878824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056860 WO2016143043A1 (en) 2015-03-09 2015-03-09 Detection device and power meter

Country Status (1)

Country Link
WO (1) WO2016143043A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2731672A1 (en) * 2018-05-16 2019-11-18 Univ Sevilla FRAUDULENT HANDLING DETECTION METHOD AT THE TERMINAL OF ELECTRICAL POWER METERS (Machine-translation by Google Translate, not legally binding)
CN113466519A (en) * 2021-06-18 2021-10-01 深圳市思达仪表有限公司 Anti-theft electricity processing mechanism of high-efficiency meter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050122217A1 (en) * 2002-07-31 2005-06-09 Seal Brian K. Magnetic field sensing for tamper identification
JP2012108128A (en) * 2010-11-18 2012-06-07 General Electric Co <Ge> Method, device and computer program product for magnetic tampering detection in meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050122217A1 (en) * 2002-07-31 2005-06-09 Seal Brian K. Magnetic field sensing for tamper identification
JP2012108128A (en) * 2010-11-18 2012-06-07 General Electric Co <Ge> Method, device and computer program product for magnetic tampering detection in meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2731672A1 (en) * 2018-05-16 2019-11-18 Univ Sevilla FRAUDULENT HANDLING DETECTION METHOD AT THE TERMINAL OF ELECTRICAL POWER METERS (Machine-translation by Google Translate, not legally binding)
CN113466519A (en) * 2021-06-18 2021-10-01 深圳市思达仪表有限公司 Anti-theft electricity processing mechanism of high-efficiency meter

Similar Documents

Publication Publication Date Title
US9092026B2 (en) Remote monitoring apparatus
EP2488882B1 (en) System and method of electromagnetic field detection
EP2172824B1 (en) Method and system of wind turbine condition monitoring
JP6365405B2 (en) Energy calculation system
EP3926349B1 (en) Voltage attack detection circuit and chip
CN104808123B (en) A kind of partial discharge of switchgear detecting system
WO2018131246A1 (en) Cause determination device, power amount management system and cause determination method
US20210088562A1 (en) Method, apparatus and device for detecting abnormality of electric signal
CN106226724A (en) A kind of clock of power meter method for detecting abnormality
CN106610756A (en) Touch control method and touch control device
JP5933386B2 (en) Data management apparatus and program
CN104298586A (en) Web system exception analytical method and device based on system log
WO2016143043A1 (en) Detection device and power meter
CN102467221A (en) Device and method for detecting noise jamming in power signals
US20140058615A1 (en) Fleet anomaly detection system and method
CN105630657A (en) Temperature detection method and device
US20200183028A1 (en) Seismic device and safety device employing same
CN105740118A (en) Chip exception detection method and apparatus as well as circuit panel exception detection method and apparatus
CN106681875B (en) Method and system for detecting power interference resistance of touch screen
WO2016143042A1 (en) Power meter
CN104457911A (en) Liquid level detecting system and method
US20150285847A1 (en) Method and data processing arrangement for determining the frequency, amplitude and attenuation of at least one output oscillation in an electrical energy supply network
CN109686397A (en) Memory with self-checking function and its checking method
CN108387799A (en) Over-pressed analysis system and device
JP2006098081A (en) Radiological survey instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP