Skip to main content
Log in

Reduced number of satellite oligodendrocytes of pyramidal neurons in layer 5 of the prefrontal cortex in schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Neuroimaging, genetic and molecular biological studies have shown impaired intra-cortical myelination in patients with schizophrenia, particularly in the prefrontal cortex. Previously we reported a significant deficit of oligodendrocytes and oligodendrocyte clusters in layers 3 and 5 of the prefrontal cortex, Brodmann area 10 (BA10) in schizophrenia. In this current study, we investigate the number of oligodendrocyte satellites (Sat-Ol) per pyramidal neuron in layer 5 of BA10 in schizophrenia (n = 17) as compared to healthy controls (n = 20) in the same section collection as previously used to study the numerical density (Nv) of oligodendrocytes and oligodendrocyte clusters. We find a significant reduction (− 39%, p < 0.001) in the number of Sat-Ol per neuron in schizophrenia as compared to the control group. The number of Sat-Ol per neuron did not correlate with the Nv of oligodendrocytes or with the Nv of oligodendrocyte clusters. Our previous studies of the inferior parietal lobule (BA39 and BA40), demonstrated significant decrease of the number of Sat-Ol only in patient subgroups with poor and fair insight. Additionally, correlation pattern between number of Sat-Ol and Nv of oligodendrocytes and oligodendrocyte clusters was similar between the two functionally interconnected cortical areas, BA10 and BA40, whereas in BA39, strong significant correlations were revealed between the number of Sat-Ol and Nv of oligodendrocyte clusters (0.9 ≤ R ≥ 0.66; p < 0.001). These data suggest that that specific features of Sat-Ol alterations patterns may be associated with specific activity-driven plasticity of corresponding networks in the brain of people with schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bartzokis G, Altshuler L (2005) Reduced intracortical myelination in schizophrenia. Am J Psychiatry 162:1229–1230. https://doi.org/10.1176/appi.ajp.162.6.1229

    Article  PubMed  Google Scholar 

  2. Bartzokis G (2012) Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacol 62(7):2137–2153. https://doi.org/10.1016/j.neuropharm.2012.01.015

    Article  CAS  Google Scholar 

  3. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, Starkey M, Webster MJ, Yolken RH, Bahn S (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362(9386):798–805. https://doi.org/10.1016/S0140-6736(03)14289-4

    Article  CAS  PubMed  Google Scholar 

  4. Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP, Smith GN, Arango V, Mann JJ, Dwork AJ, Falkai P, Honer WG (2003) Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 8(9):811–820. https://doi.org/10.1038/sj.mp.4001337

    Article  CAS  PubMed  Google Scholar 

  5. Sugai T, Kawamura M, Iritani S, Araki K, Makifuchi T, Imai C, Nakamura R, Kakita A, Takahashi H, Nawa H (2004) Prefrontal abnormality of schizophrenia revealed by DNA microarray impact on glial and neurotrophic gene expression. Ann N Y Acad Sci 1025:84–91. https://doi.org/10.1196/annals.1316.011

    Article  CAS  PubMed  Google Scholar 

  6. Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G (2014) Myelination, oligodendrocytes, and serious mental illness. Glia 62(11):1856–1877. https://doi.org/10.1002/glia.22716

    Article  CAS  PubMed  Google Scholar 

  7. Cassoli JS, Guest PC, Malchow B, Schmitt A, Falkai P, Martins-de-Souz D (2015) Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ Schizophr 1:15034. https://doi.org/10.1038/npjschz.2015.34

    Article  PubMed  PubMed Central  Google Scholar 

  8. Repovs G, Csernansky JG, Barch DM (2011) Brain network connectivity in individuals with schizophrenia and their siblings. Biol Psychiatry 69:967–973. https://doi.org/10.1016/j.biopsych.2010.11.009

    Article  PubMed  Google Scholar 

  9. Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76. https://doi.org/10.1146/annurev-clinpsy-32511-143049

    Article  PubMed  Google Scholar 

  10. Sakurai T, Gamo NJ, Hikida T, Kim S-H, Murai T, Tomoda T, Sawa A (2015) Converging models of schizophrenia—network alterations of prefrontal cortex underlying cognitive impairments. Prog Neurobiol 134:178–201. https://doi.org/10.1016/j.pneurobio.2015.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo S, Kendrick KM, Yu R, Wang HLS, Feng J (2014) Key functional circuitry altered in schizophrenia involves parietal regions associated with sense of self. Hum Brain Mapp 35(1):123–139. https://doi.org/10.1002/hbm.22162

    Article  PubMed  Google Scholar 

  12. Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Cameron S, Carter CS (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12(2):241–268. https://doi.org/10.3758/s13415-011-0083-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004) Oligodendroglial density in the prefrontal cortex area 9 in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 67(2–3):269–275. https://doi.org/10.1016/S0920-9964(03)00181-6

    Article  PubMed  Google Scholar 

  14. Kolomeets NS, Uranova NA (2018) Reduced oligodendrocyte density in layer 5 of the prefrontal cortex in schizophrenia. Eur Arch Psychiatry Clin Neurosci 23:1–8. https://doi.org/10.1007/s00406-018-0888-0

    Article  Google Scholar 

  15. Vostrikov VM, Kolomeets NS, Uranova NA (2013) Reduced oligodendroglial density in the inferior parietal lobule and lack of insight in schizophrenia. Eur J Psychiatry 27(2):111–121. https://doi.org/10.4321/S021361632013000200004

    Article  Google Scholar 

  16. Uranova NA, Vostrikov VM, Kolomeets NS (2015) Oligodendrocyte abnormalities in layer 5 in the inferior parietal lobule are associated with lack of insight in schizophrenia: a postmortem morphometric study. Eur J Psychiatry 29(3):215–222. https://doi.org/10.4321/S0213-61632015000300006

    Article  Google Scholar 

  17. Kolomeets NS, Vostrikov VM, Uranova NA (2013) Abnormalities in oligodendrocyte clusters in the inferior parietal cortex in schizophrenia are associated with insight. Eur J Psychiatry 27(4):248–258. https://doi.org/10.4321/S0213-61632013000400003

    Article  Google Scholar 

  18. Kolomeets NS, Vostrikov VM (2019) Abnormalities of oligodendrocyte clusters in supra- and infragranular layers of the prefrontal cortex in schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 119(12):62–68. https://doi.org/10.17116/jnevro201911912162

    Article  CAS  PubMed  Google Scholar 

  19. Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138(4):745–753. https://doi.org/10.1242/dev.047951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681. https://doi.org/10.1016/j.neuron.2010.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Czopka T, Ffrench-Constant C, Lyons DA (2013) Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev Cell 25(6):599–609. https://doi.org/10.1016/j.devcel.2013.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, FudgeAD EB, Li H, Richardson WD (2016) Rapid production of new oligodendrocytes is required in the earliest stages of motor skill learning. Nat Neurosci 19(9):1210–1217. https://doi.org/10.1038/nn.4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304. https://doi.org/10.1126/science.1252304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagy B, Hovhannisyan A, Barzan R, Chen TJ, Kukley M (2017) Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum. PLoS Biol 15(8):e2001993. https://doi.org/10.1371/journal.pbio.2001993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szuchet S, Nielsen JA, Lovas G, Domowicz MS, de Velasco JM, Maric D, Hudson LD (2011) The genetic signature of perineuronal oligodendrocytes reveals their unique phenotype. Eur J Neurosci 34(12):1906–1922. https://doi.org/10.1111/j.1460-9568.2011.07922.x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Takasaki C, Yamasaki M, Uchigashima M, Konno K, Yanagawa Y, Watanabe M (2010) Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex. Eur J Neurosci 32:1326–1336. https://doi.org/10.1111/j.1460-9568.2010.07377.x

    Article  PubMed  Google Scholar 

  27. Furuya S, Tabata T, Mitoma J, Yamada K, Yamasaki M, Makino A, Yamamoto T, Watanabe M, Kano M, Hirabayashi Y (2000) l-serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurons. Proc Natl Acad Sci USA 97:11528–11533. https://doi.org/10.1073/pnas.200364497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tachikawa M, Fukaya M, Terasaki T, Ohtsuki SM, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron– glial relationship for brain energy homeostasis. Eur J Neurosci 20:144–160. https://doi.org/10.1111/j.1460-9568.2004.03478.x

    Article  PubMed  Google Scholar 

  29. Bernstein H-G, Keilhoff G, Dobrowolny H, Guest PC, Steiner J (2019) Perineuronal oligodendrocytes in health and disease: the journey so far. Rev Neurosci 31(1):89–99. https://doi.org/10.1515/revneuro-2019-0020

    Article  PubMed  Google Scholar 

  30. van Landeghem FK, Weiss T, von Deimling A (2007) Expression of PACAP and glutamate transporter proteins in satellite oligodendrocytes of the human CNS. Regul Pept 142(1–2):52–59. https://doi.org/10.1016/j.regpep.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  31. Battefeld A, Klooster J, Kole MHP (2016) Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity. Nat Commun 7:11298. https://doi.org/10.1038/ncomms11298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamazaki Y, Yamazaki Y, Hozumi Y, Kaneko K, Sugihara T, Fujii S, Goto K, Kato H (2018) Modulatory effects of perineuronal oligodendrocytes on neuronal activity in the rat hippocampus. Neurochem Res 43(1):27–40. https://doi.org/10.1007/s11064-017-2278-9

    Article  CAS  PubMed  Google Scholar 

  33. Vostrikov VM, Uranova NA, Orlovskaya DD (2007) Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res 94(1–3):273–280. https://doi.org/10.1016/j.schres.2007.04.014

    Article  PubMed  Google Scholar 

  34. Vostrikov VM, Kolomeets NS, Uranova NA (2014) Deficit of perineuronal oligodendrocytes in the inferior parietal lobule is associated with lack of insight in schizophrenia. Eur J Psychiat 28(2):114–123. https://doi.org/10.4321/S0213-61632014000200005

    Article  Google Scholar 

  35. Kolomeets NS, Uranova NA (2015) Abnormalities of oligodendrocyte clusters in the inferior parietal cortex: effect of age at onset of disease. Psikhiatria 3(67):52–57

    Google Scholar 

  36. Davis JM (1974) Dose equivalence of the antipsychotic drugs. J Psychiatr Res 11:65–69. https://doi.org/10.1016/0022-3956(74)90071-5

    Article  CAS  PubMed  Google Scholar 

  37. Rey M, Schulz P, Costa C, Dick P, Tissot R (1989) Guidelines for the dosage of neuroleptics. 1: Chlorpromazine equivalents of orally administered neuroleptics. Int Clin Psychopharmacol 4(2):95–104. https://doi.org/10.1097/00004850-198904000-00001

    Article  CAS  PubMed  Google Scholar 

  38. Cornwall PL, Hassanyen F, Horn C (1996) High-dose antipsychotic medication.Improving clinical practice in a psychiatric special (intensive) care unit. Psychiatry Bull 20:676–680

    Article  Google Scholar 

  39. Brodmann K (1909) Vergleichende Lokalisationslehre der Groβhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Verlag von Johann Ambrosius Barth, Leipzig

    Google Scholar 

  40. Ichihara A, Greenberg DM (1957) Further studies on the pathway of serine formation from carbohydrate. J Biol Chem 224:331–340

    Article  CAS  Google Scholar 

  41. Snell K (1984) Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv Enzyme Regul 22:325–400. https://doi.org/10.1016/0065-2571(84)90021-9

    Article  CAS  PubMed  Google Scholar 

  42. Furuya S, Watanabe M (2003) Novel neuroglial and glioglial relationships mediated by l-serine metabolism. Arch Histol Cytol 66:109–121. https://doi.org/10.1679/aohc.66.109

    Article  CAS  PubMed  Google Scholar 

  43. Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68:647–654. https://doi.org/10.1002/jnr.10245

    Article  CAS  PubMed  Google Scholar 

  44. Wyss M, Kaddurah- Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213. https://doi.org/10.1152/physrev.2000.80.3.1107

    Article  CAS  PubMed  Google Scholar 

  45. Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 55:215–224. https://doi.org/10.1001/archpsyc.55.3.215

    Article  CAS  PubMed  Google Scholar 

  46. Pierri JN, Volk CLE, Auh S, Sampson A, Lewis DA (2001) Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 58:466–473. https://doi.org/10.1001/archpsyc.58.5.466

    Article  CAS  PubMed  Google Scholar 

  47. Sweet RA, Bergen SE, Sun Z, Marcsisin MJ, Sampson AR, Lewis DA (2007) Anatomical evidence of impaired feed forward auditory processing in schizophrenia. Biol Psychiatry 61(7):854–864. https://doi.org/10.1016/j.biopsych.2006.07.033

    Article  PubMed  Google Scholar 

  48. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65(4):446–453. https://doi.org/10.1136/jnnp.65.4.446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57(1):65–73. https://doi.org/10.1001/archpsyc.57.1.65

    Article  CAS  PubMed  Google Scholar 

  50. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V, Uranova N, Greenough WT (2004) Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 161:742–744. https://doi.org/10.1176/appi.ajp.161.4.742

    Article  PubMed  Google Scholar 

  51. Broadbelt K, Byne W, Jones LB (2002) Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res 58(1):75–81. https://doi.org/10.1016/s0920-9964(02)00201-3

    Article  PubMed  Google Scholar 

  52. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47. https://doi.org/10.1093/cercor/1.1.1-a

    Article  CAS  PubMed  Google Scholar 

  53. Sherman SM, Guillery RW (2020) Distinct function for direct and transthalamic corticocortical connections. J Neurophysiol 106(3):1068–1077. https://doi.org/10.1152/jn.00429.2011

    Article  Google Scholar 

  54. Barbas H, Zikopoulos B, Timbie C (2011) Sensory pathways and emotional context for action in primate prefrontal cortex. Biol Psychiatry 69:1133–1139. https://doi.org/10.1016/j.biopsych.2010.08.008

    Article  PubMed  Google Scholar 

  55. McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22(18):8117–8132. https://doi.org/10.1523/JNEUROSCI.22-18-08117.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yao B, Neggers SFW, Kahn RS, Thakkar KN (2020) Altered thalamocortical structural connectivity in persons with schizophrenia and healthy siblings. Neuroimage Clin. 28:102370

    Article  Google Scholar 

  57. Wang H-LS, Rau C-L, Li Y-M, Chen Y-P, Rongjun Y (2015) Disrupted thalamic resting-state functional networks in schizophrenia. Front Behav Neurosci 9:45. https://doi.org/10.3389/fnbeh.2015.00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kondo T, Tominaga T, Ichikawa M, Iijima T (1997) Differential alteration of hippocampal synaptic strength induced by pituitary adenylate cyclase activating polypeptide-38 (PACAP-38). Neurosci Lett 221:189–192. https://doi.org/10.1016/S0304-3940(96)13323-1

    Article  CAS  PubMed  Google Scholar 

  59. Kim S, Webster MJ (2011) Integrative genome-wide association analysis of cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry 4:452–461. https://doi.org/10.1038/mp.2010.23

    Article  CAS  Google Scholar 

  60. Zuccoli GS, Reis-de-Oliveira G, Garbes B, Falkai P, Schmitt A, Nakaya HI, Daniel Martins-de-Souza D (2021) Linking proteomic alterations in schizophrenia hippocampus to NMDAr hypofunction in human neurons and oligodendrocytes. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-021-01248-w

    Article  PubMed  Google Scholar 

  61. Smiley JF, Konnova K, Bleiwas C (2012) Cortical thickness, neuron density and size in the inferior parietal lobe in schizophrenia. Schizophr Res 136(1–3):43–50. https://doi.org/10.1016/j.schres.2012.01.006

    Article  PubMed  Google Scholar 

  62. van den Heuvel MP, Fornito A (2014) Brain networks in schizophrenia. Neuropsychol Rev 24:32–48. https://doi.org/10.1007/s11065-014-9248-7

    Article  PubMed  Google Scholar 

  63. Chahine G, Richter A, Wolter S, Maldonado RG, Gruber O (2017) Disruptions in the left frontoparietal network underlie resting state endophenotypic markers in schizophrenia. Hum Brain Mapp 38(4):1741–1750. https://doi.org/10.1002/hbm.23477

    Article  PubMed  Google Scholar 

  64. Liu X, Zhuo C, Qin W, Zhu J, Xu L, Xu Y, Yu C (2016) Selective functional connectivity abnormality of the transition zone of the inferior parietal lobule in schizophrenia. Neuroimage Clin 11:789–795. https://doi.org/10.1016/j.nicl.2016.05.021

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen M, Zhuo CJ, Ji F, Li GY, Ke XY (2019) Brain function differences in drug-naïve first-episode auditory verbal hallucination-schizophrenia patients with versus without insight. Chin Med J (Engl) 132(18):2199–2205. https://doi.org/10.1097/CM9.0000000000000419

    Article  Google Scholar 

  66. Wei W, Zhang Y, Li Y, Meng Y, Li M, Wang Q, Deng W, Ma X, Palaniyappan L, Zhang N, Li T (2020) Depth-dependent abnormal cortical myelination in first-episode treatment-naïve schizophrenia. Hum Brain Mapp 41(10):2782–2793. https://doi.org/10.1002/hbm.24977

    Article  PubMed  PubMed Central  Google Scholar 

  67. Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197:335–359. https://doi.org/10.1046/j.1469-7580.2000.19730335.x

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vilberg KL, Rugg MD (2008) Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia 46:1787–1799. https://doi.org/10.1016/j.neuropsychologia.2008.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  69. Humphreys GF, Lambon Ralph MA (2014) Fusion and fission of cognitive functions in the human parietal cortex. Cereb Cortex 25:3547–3560. https://doi.org/10.1093/cercor/bhu198

    Article  PubMed  PubMed Central  Google Scholar 

  70. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873. https://doi.org/10.1523/JNEUROSCI.5062-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cunningham SI, Tomasi D, Volkow ND (2017) Structural and functional connectivity of the precuneus and thalamus to the default mode network. Hum Brain Mapp 38(2):938–956. https://doi.org/10.1002/hbm.23429

    Article  PubMed  Google Scholar 

  72. Schmitt A, Simons M, Cantuti-Castelvetri L, Falkai P (2019) A new role for oligodendrocytes and myelination in schizophrenia and affective disorders? Eur Arch Psychiatry Clin Neurosci 269:371–372. https://doi.org/10.1007/s00406-019-01019-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Maree J. Webster for editing the manuscript. The authors would like to thank T.E. Makeeva for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalya A. Uranova.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolomeets, N.S., Uranova, N.A. Reduced number of satellite oligodendrocytes of pyramidal neurons in layer 5 of the prefrontal cortex in schizophrenia. Eur Arch Psychiatry Clin Neurosci 272, 947–955 (2022). https://doi.org/10.1007/s00406-021-01353-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-021-01353-w

Keywords

Navigation