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Abstract. Automatic difFerentiation is a powerful technique for evalu-
ating derivatives of functions given in the form of a high-level program-
ming language such as Fortran, C, or C++. The program is treated
ss a potentially very long sequence of elementary statements to which
the chain rule of differential calculus is applied over and over again.
Combining automatic differentiation and the organizational structure of
toolkits for parallel scientific computing provides a mechanism for eval-
uating derivatives by exploiting mathematical insight on a higher level.
In these toolkits, algorithmic structures such as BLAS-Iike operations,
linear and nonlinear solvers, or integratora for ordinary differential equa-
tions can be identified by their standardized interfaces and recognized
8.s high-level mathematical objects rather than as a sequence of elemen-
tary statements. In this note, the differentiation of a linear solver with
respect to some parameter vector is taken as an example. Mathematical
insight is used to reformulate this problem into the solution of multiple
linear systems that share the same coefficient matrix but differ in their
right-hand sides. The experiments reported here use .4DIC, a tool for the
automatic differentiation of C programs, and PETSC, an object-oriented
toolkit for the parallel solution of scientific problems modeled by partial
differential equations.

1 Numerical versus Automatic Differentiation

Gra&ent methods for optimization problems and Newton’s method for the so-
lution of nonlinear systems are only two examples showing that computational
techniques require the evaluation of derivatives of some objective function. In
large-scale scientific applications, the objective function ~ : Rn + lRm is typi-
cally not available in analytic form but is given by a computer code written in a
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high-level programming language such as Fortran, C, or C++. Think of ~ as the
function computed by, say, a (parallel) computational fluid dynamics code con-
sisting of hundreds of thousands lines that simulates the flow around a complex
three-dimensional geometry. Given such a representation of the objective func-

tion ~(x) = (~l(x), ~z(x),.. . , fro(x))’, computational methods often demand
the evaluation of the Jacobian matrix

(
*M4 ..0 *fI(x)

Jf(x):= : “.. ;

)

CR
mxn

(1)

*fro(x) . . . &fm(x)

at some point of interest x c Rn.
Deriving an analytic expression for Jf (x) is often inadequate. Moreover, im-

plementing such an anaiytic expression by hand is challenging, error-prone, and
time-consuming. Hence, other approaches are typically preferred.

A well-known and widely used approach for the approximation of the Ja-
cobian matrix is divided differences (DD). For the sake of simplicity, we men-
tion only first-order forward DD but stress that the following discussion applies
to DD as a technique of numerical differentiation in general. Using first-order
forward DD, one can approximate the ith column of the Jacobian matrix (1) by

f(x + hiei) - f(x)
. 7 (2)

where hi is a suitably-chosen step size and ei c Rn is the ith Cartesian unit
vector. An advantage of the DD approach is that the function ! need be evaluated
only at some suitably chosen points. Roughly speaking, f is used as a black box
evaluated at some points. The main dkadvantage of DD is that the accuracy
of the approximation depends crucially on a suitable choice of these points,
specifically, of the step size hi. There is always the dilemma that the step size
should be small in order to decrease the truncation error of (2) and that, on
the other hand, the step size should be large to avoid cancellation errors using
finite-precision arithmetic when evaluating (2).

Analytic and numerical differentiation methods are often considered to be
the only options for computing derivatives. Another option, however, is symbolic
differentiation by computer algebra packages such as Macsyma or Mathematical.
Unfortunately, because of the rapid growth of the underlying explicit expressions
for the derivatives, traditional symbolic differentiation is currently inefficient [9].

Another technique for computing derivatives of an objective function is au-
tomatic differentiation (AD) [10, 16]. Given a computer code for the objective
function in virtually any high-level programming language such as Fortran, C,
or C++, automatic differentiation tools such as ADIFOR [4, 5], ADIC [6], or
ADOL-C [13] can by applied in a black-box fashion. A survey of AD tools can
be found at http: //www .mcs. anl .gov/Projects/autodif f /AD.Tools. These
tools generate another computer program, called a derivative-enhanced program,
that evaluates ~(x) and Jf (x) simultaneously. The key concept behind AD is
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the fact that every computation, no matter how complicated, is executed on a
computer as a—potentially very long—sequence of a limited set of elementary
arithmetic operations such as additions, multiplications, and intrinsic functions
such as sin ( ) and cos ( ). By applying the chain rule of differential calculus
over and over again to the composition of those elementary operations, ~(x)
and J~(x) can be evaluated up to machine precision. Besides the advantage of
accuracy, AD requires minimal human effort and has been proven more efficient
than DD under a wide range of circumstances [3, 5, 12].

2 Computational Differentiation in Scientific Toolkits

Given the fact that automatic differentiation tools need not know anything about
the underlying problem whose code is being differentiated, the resulting efficiency
of the automatically generated code is remarkable. However, it is possibIe not
only to apply AD technology in a black-box fashion but also to couple the appli-
cation of AD with high-level knowledge about the underlying code. We refer to
this combination as computational diflerentidion (CD). In some cases, CD can
reduce memory requirements, improve performance, and increase accuracy. For
instance, a CD strategy identifying a major computational component, deriving
its analytical expression, and coding the corresponding derivatives by hand is
likely to perform better than the standard AD approach that can operate only
on the level of simple arithmetic operations.

In toolkits for scientific computations, algorithmic structures can be automat-
ically recognized when applying AD tools, provided standardized interfaces are
available. Examples include standard (BLAS-like) linear algebra kernels, linear
and nonlinear solvers, and integrators for ordhmry differential equations. These
algorithmic structures are the key to exploiting high-level knowledge when CD
is used to differentiate applications written in toolkits such as the Portable,
Extensible Toolkit for Scientific Computation (PETSC) [1, 2].

Consider the case of differentiating a code for the solution of sparse systems
of linear equations. PETSC provides a uniform interface to a variety of methods
for solving these systems in parallel. Rather than applying an AD tool in a
black-box fashion to a particular method as a sequence of elementary arithmetic
operations, the combination of CD and PETSC allows us to generate a single
derivative-enhanced program for any linear solver. More precisely, assume that
we are concerned with a code for the solution of

~ . X(S) = b(s) (3)

where A c R ‘x N is the coefficient matrix. For the sake of simplicity, it is
assumed that only the solution x(s) c RN and the right-hand side b(s) G RN,
but not the coefficient matrix, depend on a free parameter vector s E R’. The
code for the solution of (3) implicitly defines a function x(s). Now, suppose that
one is interested in the Jacobian JX(S) c R N‘r of the solution x with respect
to the free parameter vector s, Differentiating (3) with respect to s yields

A . ~x(S) = ~b(s), (4)

where Jb (s) E RN x” denotes the Jacobian of the right-hand side b.
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In parallel high-performance computing, the coefficient matrix .4 is often
large and sparse. For instance, numerical simulations based on partial differen-
tial equations typically lead to such systems. Krylov subspace methods [17] are
currently considered to be among the most powerful techniques for the solution
of sparse linear systems. These iterative methods generate a sequence of approx-
imations to the exact solution x(s) of the system (3). Hence, an implementation
of a Krylov subspace method does not compute the function x(s) but only an
approximation to that function. Since, in this case, AD is applied to the approx-
imation of a function rather than to the function itself, one may ask whether
and how AD-produced derivatives are reasonable approximations to the desired
derivatives of the function x(s). This sometimes undesired side-effect is discussed
in more detail in [8, 11] and can be minimized by the following CD approach.

Recall that the standard AD approach would process the given code for a
particular linear solver for (3), say an implementation of the biconjugate gra-
dient method, as a sequence of binary additions, multiplications, and the like.
In contrast, combining the CD approach with PETSC consists of the following
steps:

1. Recognize from inspection of PETSC’S interface that the code is meant to
solve a linear system of type (3) regardless of which particular iterative
method is used.

2. Exploit the knowledge that the Jacobian JX(S) is given by the solution of
the multiple linear systems (4) involving the same coefficient matrix, but r
different right-hand sides.

The CD approach obviously eliminates the above mentioned problems with au-
tomatic differentiation of iterative schemes for the approximation of functions.
There is also the advantage that the CD approach abstracts from the partic-
ular linear solver. Differentiation of codes involving any linear solver, not only
those making use of the blconjugate gradient method, benefits from an efficient
technique to solve (4).

3 Potential Gain of CD and Future Research Directions

A previous study [14] differentiating PETSC with ADIC has shown that, for
iterative linear solvers, CD-produced derivatives are to be preferred to derivatives
obtained from AD or DD. More precisely, the findings from that study with
respect to differentiation of linear solvers are ~ follows. The derivatives produced
by the CD and AD approaches are several orders of magnitude more accurate
than those produced by DD. Compared with AD, the accuracy of CD is higher.
In addition, the CD-produced derivatives aze obtained in less execution time
than those by AD, which in turn is faster than DD. The differences in execution
time between these three approaches increase with increasing the dimension, r,

of the free parameter vector s.
While the CD approach turns out to be clearly the best of the three discussed

approaches, its performance can be improved significantly. The linear systems (4)
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involving the same coefficient matrix but r different right-hand sides are solved
in [14] by running r times a typical Krylov subspace method for a linear system
with a single right-hand side. In contrast to these successive runs, so-called block
versions of Krylov subspace methods are suitable candidates for solving systems
with multiple right-hand sides; see [7, 15] and the references given there. In
each block iteration, block Krylov methods generate r iterates simultaneously,
each of which is desi~ed to be an approximation to the exact solutions of a
single system. Note that direct methods such as Gaussian elimination can be
trivially adapted to multiple linear systems because their computational work is
dominated by the factorization of the coefficient matrix. Once the factorization
is available, the solutions of multiple linear systems are given by a forward and
back substitution per right-hand side. However, because of the excessive amount
of fill-in, direct methods are often inappropriate for large sparse systems.

In this note, we extend the work reported in [14] by incorporating itera-
tive block methods into the CD approach. Based on the given scenario of the
combination of the ADIC tool and the PETSC package, we consider a paral-
lel implementation of a block version of the biconjugate gradient method [15].
We focus hereon some fundamental issues illustrating this approach; a rigorous
numerical treatment will be presented elsewhere. To demonstrate the potential
gain from using a block method in contrast to successive runs of a typical iter-
ative method, we take the number of matrix-vector multiplications as a rough
performance measure. This is a legitimate choice because, usually, the matrix-
vector multiplications dominate the computational work of an iterative method
for large sparse systems.

Figure 1 shows, on a log scale, the convergence behavior of the block bicon-
jugate gradient method applied to a system arising from a discretization of a
two-dimensional partial differential equation of order IV = 1,600 with r = 3

right-hand sides. Throughout thk note, we always consider the relative residual
norm, that is, the Euclidean norm of the residual scaled by the Euclidean norm
of the initial residual. In this example, the iterates for the r = 3 systems con-
verge at the same step of the block iteration. In general, however, these iterates
converge at different steps. Future work will therefore be concerned with how
to detect and deflate converged systems. Such deflation techniques are crucial
to block methods because the algorithm would break down in the next block
iteration step; see the dkicussion in [7] for more details on deflation. We further
assume that block iterates converge at the same step and that deflation is not
necessary.

Next, we consider a finer discretization of the same equation leading to a
larger system of order IV = 62,500 with r = 7 right-hand sides to illustrate
the potential gain of block methods. Figure 2 compares the convergence his-
tory of applying a block method to obtain block iterates for all r = 7 systems
simultaneously and running a typical iterative method for a single right-hand
side r = 7 times one after another. For all our experiments, we use the biconju-
gate gra&ent method provided by the linear equation solver (SLES) component
of PETSC as a typical iterative method for a single right-hand side. For the plot
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Fig. 1. Convergence history of the block method for the solution of r = 3 systems
involving the same coefficient matrix of order N = 1, 600. The residual norm is shown
for eaeh of the systems indhidually.

of the block method we use the largest relative residual norm of all systems.
In this example, the biconjugate gradient method for a single right-hand side
(dotted curve) needs 8,031 matrix-vector multiplications to achieve a tolerance
of 10–7 in the relative residual norm. The block method (solid curve), on the
contrary, converges in only 5,089 matrix-vector multiplications to achieve the
same tolerance. Clearly, block methods offer a potential speedup in comparison
with successive runs of methods for a single right-hand side.

The ratio of the number of matrix-vector multiplications of the method for a
single right-hand side to the number of matrix-vector multiplications of the block
method is 1.58 in the example above and is given in the corresponding column
of Table 1. In addition to the case where the number of right-hand sides is T = 7,

this table contains the results for the same coefficient matrix, but for varying
numbers of right-hand sides. It is not surprising that the number of matrix-vector
multiplications needed to converge increases with an increasing number of right-
hand sides T. Note, however, that the ratio also increases with r. This behavior
shows that the larger the number of right-hand sides the more attractive the use
of block methods.

Many interesting aspects remain to be investigated. Besides the above men-
tioned deflation tectilque, there is the question of determining a suitable pre-
conditioned. Here, we completely omitted preconditioning in order to make the
comparison between the block method and its correspondence for a single right-
hand side more visible. Nevertheless, preconditioning is an important ingredient
in any iterative technique for the solution of sparse linear systems for both single
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Fig. 2. Comparison of the block method for the solution of r = 7 systems involving the
same coefficient matrix of order iV = 62, 500 and r successive runs of a typical iterative
method for a single right-hand side.

and multiple right-hand sides. Notice that, in their method, Freund and Mal-
hotra [7] report a dependence of the choice of an appropriate preconditioned on
the parameter r.

Block methods are also of interest because they offer the potential for bet-
ter performance. At the single-processor level, performing several matrix-vector
products simultaneously provides increased temporzd locality for the matrix,
thus mitigating the effects of the memory bandwidth bottleneck. The availabil-
ity of several vectors at the same time also provides opportunities for increased
parallel performance, as increased data locality reduces the ratio of communi-

cable 1. Comparison of matrix-vector multiplications needed to require a decrease
of seven orders of magnitude in the relative residual norm for diEerent dimensions, r,
of the free parameter vector. The rows show the number of matrix-vector multiplica-
tions for r successive runs of a typical iterative method for a single right-hand side, a
corresponding block version, and their ratio, respectively. (The order of the matrix is
IV= 62, 500.)

r 1 2 3 4 5678 9 10

typical 1,047 2,157 3,299 4,463 5,641 6,831 8,031 9,237 10,451 11,669
block 971 1,770 2,361 3,060 3,815 4,554 5,089 5,624 6,219 6,550
ratio 1.08 1.22 1.40 1.46 1.48 1.50 1.58 1.64 1.68 1.78



cation to computation. Even for the single right-hand side case, block methods
are attractive because of their potential for exploiting locality, a key issue in
implementing techniques for high-performance computers.

4 Concluding Remarks

Automatic chfferentiation applied to toolkits for parallel scientific computing
such as PETSC increases their functionality significantly. While automatic dif-
ferentiation is more accurate and, under a wide range of circumstances, faster
than approximating derivatives numerically, its performzince can be improved
even further by exploiting high-level mathematical knowledge. The organiza-
tional structure of toolkits provides this information in a natural way by relying
on standardized interfaces for high-level algorithmic structures. The reason why
improvements over the traditional form of automatic differentiation are possible
is that, in the traditional approach, any program is treated as a sequence of ek-
mentary statements. Though powerftd, automatic differentiation operates on the
level of statements. In contrast, comptitational differentiation, the combination
of mechanically applying techniques of automatic differentiation and human-
guided mathematical insight, allows the analysis of objects on higher levels than
on the level of elementary statements. These issues are demonstrated by takhg
the differentiation of an iterative solver for the solution of large sparse systems
of linear equations as an example. Here, mathematical insight consists in refor-

mulating the differentiation of a linear solver into a solution of multiple linear
systems involving the same coefficient matrix, but whose right-hand sides dif-
fer. The reformulation enables the integration of appropriate techniques for the
problem of solving multiple linear systems, leading to a significant performance

improvement when differentiating code for any linear solver.
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